OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24368–24374

Laser induced sponge-like Si in Si-rich oxides for photovoltaics

S. Gundogdu, E. Sungur Ozen, R. Hübner, K. H. Heinig, and A. Aydinli  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 24368-24374 (2013)
http://dx.doi.org/10.1364/OE.21.024368


View Full Text Article

Enhanced HTML    Acrobat PDF (1879 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that a sponge-like structure of interconnected Si nanowires embedded in a dielectric matrix can be obtained by laser annealing of silicon rich oxides (SRO). Due to quantum confinement, the large bandgap displayed by these percolated nanostructures can be utilized as a tandem stage in 3rd generation thin-film solar cells. Well passivated by the SiO2 dielectric matrix, they are expected to overcome the difficulty of carrier separation encountered in the case of isolated crystalline quantum dots. In this study PECVD grown SRO were irradiated by a cw Ar+ laser. Raman spectroscopy has been used to assess the crystallinity of the Si nanostructures and thus to optimize the annealing conditions as dwell times and power densities. In addition, Si plasmon imaging in the transmission electron microscope was applied to identify the sponge-like structure of phase-separated silicon.

© 2013 Optical Society of America

OCIS Codes
(350.3390) Other areas of optics : Laser materials processing
(160.4236) Materials : Nanomaterials
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Laser Microfabrication

History
Original Manuscript: July 22, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 24, 2013
Published: October 4, 2013

Citation
S. Gundogdu, E. Sungur Ozen, R. Hübner, K. H. Heinig, and A. Aydinli, "Laser induced sponge-like Si in Si-rich oxides for photovoltaics," Opt. Express 21, 24368-24374 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-24368


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012). [CrossRef] [PubMed]
  2. G. Conibeer, “Third-generation photovoltaics,” Mater. Today10(11), 42–50 (2007). [CrossRef]
  3. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures,” J. Appl. Phys.111(3), 034307 (2012). [CrossRef]
  4. J. Carrillo-López, J. A. Luna-López, I. Vivaldo-De la Cruz, M. Aceves-Mijares, A. Morales-Sanchez, and G. García-Salgado, “UV enhancement of silicon solar cells using thin SRO films,” Sol. Energy Mater. Sol. Cells100, 39–42 (2012). [CrossRef]
  5. G. Conibeer, M. A. Green, R. Corkish, Y.-H. Cho, E.-C. Cho, and C.-W. Jiang, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films654, 511–512 (2005).
  6. N. Tomozeiu, “Silicon oxide (SiOx, 0<x<2): a challenging material for optoelectronics,” Optoelectronics - Materials and Techniques, Prof. P. Predeep (Ed.), (2011).
  7. B.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, “Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4,” Appl. Phys. Lett.86(9), 091908 (2005). [CrossRef]
  8. Z. Wan, S. Huang, M. A. Green, and G. Conibeer, “Rapid thermal annealing and crystallization mechanism study of Si-NCs in SiC matrix,” Nanoscale Res. Lett.6, 129 (2011).
  9. M. D. Kelzenberg, M. C. Putnam, D. B. Turner-Evans, N. S. Lewis, and H. A. Atwater, “Predicted efficiency of Si wire array solar cells,” Appl. Phys. Lett.93, 032112 (2008).
  10. B.-R. Huang, Y.-K. Yang, T.-C. Lin, and W.-L. Yang, “A simple and low-cost technique for silicon nanowire arrays based solar cells,” Sol. Energy Mater. Sol. Cells98, 357–362 (2012). [CrossRef]
  11. L. Yu, B. O’Donnell, P.-J. Alet, and P. R. Cabarrocas, “All-in-situ fabrication and characterization of silicon nanowires on TCO/glass substrates for photovoltaic application,” Sol. Energy Mater. Sol. Cells94(11), 1855–1859 (2010). [CrossRef]
  12. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007). [CrossRef] [PubMed]
  13. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007). [CrossRef]
  14. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett.8(2), 710–714 (2008). [CrossRef] [PubMed]
  15. B. O'Donnell, L. Yu, M. Foldyna, and P. R. Cabarrocas, “Silicon nanowire solar cells grown by PECVD,” J. Non-Cryst. Solids358(17), 2299–2302 (2012). [CrossRef]
  16. T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, “Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices,” Nano Lett.8(10), 3456–3460 (2008). [CrossRef] [PubMed]
  17. J. Cho, B. O'Donnell, L. Yu, K.-H. Kim, I. Ngo, and P. R. Cabarrocas, “Sn-catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass,” Prog. Photovolt. Res. Appl.21(1), 77–81 (2013). [CrossRef]
  18. P. Cuony, D. T. L. Alexander, I. Perez-Wurfl, M. Despeisse, G. Bugnon, M. Boccard, T. Söderström, A. Hessler-Wyser, C. Hébert, and C. Ballif, “Silicon filaments in silicon oxide for next-generation photovoltaics,” Adv. Mater.24(9), 1182–1186 (2012). [CrossRef] [PubMed]
  19. B. Hinds, F. Wang, D. Wolfe, Hinkle, and G. Lucovsky, “Investigation of postoxidation thermal treatments of Si/SiO2 interface in relationship to the kinetics of amorphous Si suboxide decomposition,” J. Vac. Sci. Technol. B16, 2171–2177 (1998).
  20. D. Riabinina, C. Durand, J. Margot, M. Chaker, G. A. Botton, and F. Rosei, “Nucleation and growth of Si nanocrystals in an amorphous SiO2 matrix,” Phys. Rev. B74(7), 075334 (2006). [CrossRef]
  21. R. A. R. Oliveira, M. Ribeiro, I. Pereyra, and M. I. Alayo, “Silicon clusters in PECVD silicon-rich SiOxNy,” Mater. Charact.50(2-3), 161–166 (2003). [CrossRef]
  22. J. J. van Hapert, A. M. Vredenberg, E. E. van Faassen, N. Tomozeiu, W. M. Arnoldbik, and F. H. P. M. Habraken, “Role of spinodal decomposition in the structure of SiOx,” Phys. Rev. B69(24), 245202 (2004).
  23. T. Muller, K.-H. Heinig, W. Moller, C. Bonafos, H. Coffin, N. Cherkashin, G. Ben Assayag, S. Schamm, G. Zanchi, A. Claverie, M. Tence, and C. Colliex, “Multi-dot floating-gates for nonvolatile semiconductor memories: Their ion beam synthesis and morphology,” Appl. Phys. Lett.85(12), 2373–2376 (2004). [CrossRef]
  24. T. Muller, K.-H. Heinig, and W. Moller, “Size and location control of Si nanocrystals at ion beam synthesis in thin SiO2 films,” Appl. Phys. Lett.81(16), 3049–3052 (2002). [CrossRef]
  25. A. Janotta, Y. Dikce, M. Schmidt, C. Eisele, M. Stutzmann, M. Luysberg, and L. Houben, “Light-induced modification of a-SiO[sub x] II: Laser crystallization,” J. Appl. Phys.95(8), 4060–4069 (2004). [CrossRef]
  26. L. Khriachtchev, T. Nikitin, M. Rasanen, A. Domanskaya, S. Boninelli, F. Iacona, A. Engdahl, J. Juhanoja, and S. Novikov, “Continuous-wave laser annealing of Si-rich oxide: A microscopic picture of macroscopic Si[Single Bond]SiO2 phase separation,” J. Appl. Phys.108(12), 124301 (2010). [CrossRef]
  27. L. Khriachtchev, “Optical and structural properties of silicon nanocrystals and laser-induced thermal effects',” J. Electrochem. Soc.159(1), K21–K26 (2012). [CrossRef]
  28. I. Balberg, E. Savir, J. Jedrzejewski, A. G. Nassiopoulou, and S. Gardelis, “Fundamental tansport processes in ensembles of silicon quantum dots,” Phys. Rev. B75(23), 235329 (2007). [CrossRef]
  29. R. Elliman, “The synthesis of silicon nanocrystals by ion implantation” Silicon Nanocrystals: Fundamentals, Synthesis and Applications, Lorenzo Pavesi and Rasit Turan,eds. (Wiley, 2010), Chap. 9.
  30. N. P. Barradas, C. Jeynes, and R. P. Webb, “Simulated annealing analysis of rutherford backscattering data,” Appl. Phys. Lett.71(2), 291–293 (1997). [CrossRef]
  31. S. P. Singh, P. Srivastava, S. Ghosh, S. A. Khan, and G. Vijaya Prakash, “Phase stabilization by rapid thermal annealing in amorphous hydrogenated silicon nitride film,” J. Phys. Condens. Matter21(9), 095010 (2009). [CrossRef] [PubMed]
  32. G. Franzò, M. Miritello, S. Boninelli, R. Lo Savio, M. G. Grimaldi, F. Priolo, F. Iacona, G. Nicotra, C. Spinella, and S. Coffa, “Microstructural evolution of SiOx films and its effect on the luminescence of Si nanoclusters,” J. Appl. Phys.104(9), 094306 (2008). [CrossRef]
  33. D. Barba, F. Martin, and G. G. Ross, “Evidence of localized amorphous silicon clustering from Raman depth-probing of silicon nanocrystals in fused silica,” Nanotechnology19(11), 115707 (2008). [CrossRef] [PubMed]
  34. S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008). [CrossRef] [PubMed]
  35. Y. Ritz, H. Stegmann, H.-J. Engelmann, and E. Zschech, “Target preparation of samples for 3D-TEM using micromanipulators,” Prakt. Metallogr.41, 180–189 (2004).
  36. C. M. M. Denisse, K. Z. Troost, J. B. Oude Elferink, F. H. P. M. Habraken, and M. Hendriks, “Plasma-enhanced growth and composition of silicon oxynitride films,” J. Appl. Phys.60(7), 2536–2542 (1986). [CrossRef]
  37. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3733 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited