OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24497–24503

Optical investigation of strong exciton localization in high Al composition AlxGa1-xN alloys

Shunfei Fan, Zhixin Qin, Chenguang He, Mengjun Hou, Xinqiang Wang, Bo Shen, Wei Li, Weiying Wang, Defeng Mao, Peng Jin, Jianchang Yan, and Peng Dong  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24497-24503 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (935 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The exciton localization in wurtzite AlxGa1-xN alloys with x varying from 0.41 to 0.63 has been studied by deep-ultraviolet photoluminescence (PL) spectroscopy and picosecond time-resolved PL spectroscopy. Obvious S-shape temperature dependence was observed indicating that the strong exciton localization can be formed in high Al composition AlxGa1-xN alloys. It was also found that the Al composition dependence of exciton localization energy of AlGaN alloys is inconsistent with that of the excitonic linewidth. We contribute the inconsistency to the strong zero-dimensional exciton localization.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:

Original Manuscript: July 22, 2013
Revised Manuscript: September 3, 2013
Manuscript Accepted: September 20, 2013
Published: October 7, 2013

Shunfei Fan, Zhixin Qin, Chenguang He, Mengjun Hou, Xinqiang Wang, Bo Shen, Wei Li, Weiying Wang, Defeng Mao, Peng Jin, Jianchang Yan, and Peng Dong, "Optical investigation of strong exciton localization in high Al composition AlxGa1-xN alloys," Opt. Express 21, 24497-24503 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics2(2), 77–84 (2008). [CrossRef]
  2. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi206(6), 1176–1182 (2009) (a). [CrossRef]
  3. M. S. Shur and R. Gaska, “Deep-ultraviolet light-emitting diodes,” Electron Devices, IEEE Transactions on57(1), 12–25 (2010). [CrossRef]
  4. Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature441(7091), 325–328 (2006). [CrossRef] [PubMed]
  5. C. G. Van de Walle and J. Neugebauer, “First-principles calculations for defects and impurities: Applications to III-nitrides,” J. Appl. Phys.95(8), 3851–3879 (2004). [CrossRef]
  6. K. Nam, J. Li, M. Nakarmi, J. Lin, and H. Jiang, “Unique optical properties of AlGaN alloys and related ultraviolet emitters,” Appl. Phys. Lett.84(25), 5264–5266 (2004). [CrossRef]
  7. R. Banal, M. Funato, and Y. Kawakami, “Optical anisotropy in [0001]-oriented AlxGa1-xN/AlN quantum wells (x> 0.69),” Phys. Rev. B79(12), 121308 (2009). [CrossRef]
  8. K. Takeda, F. Mori, Y. Ogiso, T. Ichikawa, K. Nonaka, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Internal quantum efficiency of GaN/AlGaN‐based multi quantum wells on different dislocation densities underlying layers,” Phys. Status Solidi7(7-8c), 1916–1918 (2010). [CrossRef]
  9. K. O'Donnell, R. Martin, and P. Middleton, “Origin of luminescence from InGaN diodes,” Phys. Rev. Lett.82(1), 237–240 (1999). [CrossRef]
  10. H. Yang, P. Kuo, T. Lin, Y. Chen, K. Chen, L. Chen, and J.-I. Chyi, “Mechanism of luminescence in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.76(25), 3712–3714 (2000). [CrossRef]
  11. R. Martin, P. Middleton, K. P. O’Donnell, and W. Van der Stricht, “Exciton localization and the Stokes’ shift in InGaN epilayers,” Appl. Phys. Lett.74(2), 263–265 (1999). [CrossRef]
  12. Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.77(19), 2988–2990 (2000). [CrossRef]
  13. Y.-H. Cho, G. Gainer, A. Fischer, J. Song, S. Keller, U. Mishra, and S. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998). [CrossRef]
  14. C.-C. Hong, H. Ahn, C.-Y. Wu, and S. Gwo, “Strong green photoluminescence from InxGa1-xN/GaN nanorod arrays,” Opt. Express17(20), 17227–17233 (2009). [CrossRef] [PubMed]
  15. N. Nepal, J. Li, M. Nakarmi, J. Lin, and H. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett.88(6), 062103 (2006). [CrossRef]
  16. E. Kuokstis, W. Sun, M. Shatalov, J. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett.88(26), 261905 (2006). [CrossRef]
  17. A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1-xN layers,” J. Appl. Phys.95(9), 4670–4674 (2004). [CrossRef]
  18. H. Kim, R. Mair, J. Li, J. Lin, and H. Jiang, “Time-resolved photoluminescence studies ofAlxGa1-xNalloys,” Appl. Phys. Lett.76(10), 1252–1254 (2000). [CrossRef]
  19. T. Onuma, S. F. Chichibu, A. Uedono, T. Sota, P. Cantu, T. M. Katona, J. F. Keading, S. Keller, U. K. Mishra, and S. Nakamura, “Radiative and nonradiative processes in strain-free AlGaN films studied by time-resolved photoluminescence and positron annihilation techniques,” J. Appl. Phys.95(5), 2495 (2004). [CrossRef]
  20. H. Gotoh, H. Ando, T. Takagahara, H. Kamada, A. Chavez-Pirson, and J. Temmyo, “Effects of dimensionality on radiative recombination lifetime of excitons in thin quantum boxes of intermediate regime between zero and two Dimensions,” Jpn. J. Appl. Phys.36(Part 1, No. 6B), 4204–4208 (1997). [CrossRef]
  21. J. Huang, X. Dong, X. Luo, X. Liu, Z. Xu, and W. Ge, “Localized exciton dynamics in AlInGaN alloy,” Solid State Commun.126(8), 473–477 (2003). [CrossRef]
  22. S. Chichibu, K. Hazu, T. Onuma, and A. Uedono, “Collateral evidence for an excellent radiative performance of AlxGa1-xN alloy films of high AlN mole fractions,” Appl. Phys. Lett.99(5), 051902 (2011). [CrossRef]
  23. K. Lee, P. Parbrook, T. Wang, F. Ranalli, T. Martin, R. Balmer, and D. Wallis, “Optical investigation of exciton localization in AlxGa1-xN,” J. Appl. Phys.101(5), 053513 (2007). [CrossRef]
  24. L. Teles, J. Furthmüller, L. Scolfaro, J. Leite, and F. Bechstedt, “First-principles calculations of the thermodynamic and structural properties of strained InxGa1-xN and AlxGa1-xN alloys,” Phys. Rev. B62(4), 2475–2485 (2000). [CrossRef]
  25. M. Miyoshi, M. Sakai, H. Ishikawa, T. Egawa, T. Jimbo, M. Tanaka, and O. Oda, “MOVPE growth and characterization of high-Al-content AlGaN/GaN heterostructures on 100-mm-diameter sapphire substrates,” J. Cryst. Growth272(1-4), 293–299 (2004). [CrossRef]
  26. Y. Liao, C. Thomidis, C.- Kao, and T. D. Moustakas, “AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy,” Appl. Phys. Lett.98(8), 081110 (2011). [CrossRef]
  27. E. Francesco Pecora, W. Zhang, L. Zhou, D. J. Smith, J. Yin, R. Paiella, L. Dal Negro, and T. Moustakas, “Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations,” Appl. Phys. Lett.100, 061111 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited