OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24550–24565

Efficient decoy-state quantum key distribution with quantified security

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24550-24565 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1530 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyse the finite-size security of the efficient Bennett-Brassard 1984 protocol implemented with decoy states and apply the results to a gigahertz-clocked quantum key distribution system. Despite the enhanced security level, the obtained secure key rates are the highest reported so far at all fibre distances.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4510) Fiber optics and optical communications : Optical communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: August 2, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 24, 2013
Published: October 7, 2013

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, "Efficient decoy-state quantum key distribution with quantified security," Opt. Express 21, 24550-24565 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Wiesner, “Conjugate coding,” Sigact News15(1), 78–88 (1983). [CrossRef]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991). [CrossRef] [PubMed]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002). [CrossRef]
  5. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009). [CrossRef]
  6. P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Enhanced single-photon fringe visibility in a 10 km-long prototype quantum cryptography,” Electron. Lett.29(14), 1291 (1993). [CrossRef]
  7. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys.11(7), 075001 (2009). [CrossRef]
  8. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19(11), 10387–10409 (2011). [CrossRef] [PubMed]
  9. K. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X2(4), 041010 (2012). [CrossRef]
  10. B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, and A. J. Shields, “A quantum access network,” Nature501(7465), 69–72 (2013). [CrossRef] [PubMed]
  11. D. Mayers, D. Coppersmith, ed., in Advances in Cryptology:Proceedings of CRYPTO '95, vol. 963 of Lecture Notes in Computer Science, D. Coppersmith, Ed. (Springer-Verlag, 1995), pp. 124–135; in Advances in Cryptology: Proceedings of CRYPTO '96, vol. 1109 of Lecture Notes in Computer Science, N. Koblitz, Ed. (Springer-Verlag, 1996), pp. 343–357.
  12. H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D41(3), 599–627 (2007). [CrossRef]
  13. S. Watanabe, R. Matsumoto, and T. Uyematsu, “Noise tolerance of the BB84 protocol with random privacy amplification,” Int. J. Quantum Inf.4(6), 935–946 (2006). [CrossRef]
  14. M. Hayashi, “Practical evaluation of security for quantum key distribution,” Phys. Rev. A74(2), 022307 (2006). [CrossRef]
  15. M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Phys. Rev. A76(1), 012329 (2007). [CrossRef]
  16. V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett.100(20), 200501 (2008). [CrossRef] [PubMed]
  17. V. Scarani and R. Renner, “Security bounds for quantum cryptography with finite resources,” in Theory of Quantum Computation, Communication, and Cryptography, vol. 5106 of Lecture Notes in Computer Science, (Berlin Springer, 2008), pp 83–95.
  18. M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat Commun3, 634 (2012). [CrossRef] [PubMed]
  19. R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A72(1), 012332 (2005). [CrossRef]
  20. B. Kraus, N. Gisin, and R. Renner, “Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication,” Phys. Rev. Lett.95(8), 080501 (2005). [CrossRef] [PubMed]
  21. H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and proof of its unconditional security,” J. of Crypt.18(2), 133–165 (2005). [CrossRef]
  22. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett.91(5), 057901 (2003). [CrossRef] [PubMed]
  23. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett.94(23), 230503 (2005). [CrossRef] [PubMed]
  24. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett.94(23), 230504 (2005). [CrossRef] [PubMed]
  25. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A72(1), 012326 (2005). [CrossRef]
  26. R. Y. Q. Cai and V. Scarani, “Finite-key analysis for practical implementations of quantum key distribution,” New J. Phys.11(4), 045024 (2009). [CrossRef]
  27. M. Lucamarini, J. F. Dynes, Z. L. Yuan, and A. J. Shields, “Practical treatment of quantum bugs,” Proc. SPIE8542, Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI (2012).
  28. M. Hayashi and R. Nakayama, “Security analysis of the decoy method with the Bennett-Brassard 1984 protocol for finite key lengths,” arXiv:1302.4139 (2013).
  29. Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, and X. Ma, “Decoy-state quantum key distribution with biased basis choice,” Sci Rep3, 2453 (2013). [CrossRef] [PubMed]
  30. N. J. Beaudry, T. Moroder, and N. Lütkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett.101(9), 093601 (2008). [CrossRef] [PubMed]
  31. T. Tsurumaru and K. Tamaki, “Security proof for QKD systems with threshold detectors,” Phys. Rev. A78, 032302 (2008). [CrossRef]
  32. J. Hasegawa, M. Hayashi, T. Hiroshima, and A. Tomita, “Security analysis of decoy state quantum key distribution incorporating finite statistics,” arXiv:0707.3541 (2007).
  33. M. Koashi and J. Preskill, “Secure quantum key distribution with an uncharacterized source,” Phys. Rev. Lett.90(5), 057902 (2003). [CrossRef] [PubMed]
  34. H. K. Lo and J. Preskill, “Security of quantum key distribution using weak coherent states with nonrandom phases,” Quantum Inf. Comput.7, 431 (2007).
  35. M. Koashi, “Efficient quantum key distribution with practical sources and detectors,” arXiv:quant-ph/0609180 (2006).
  36. A. Wald, “Tests of statistical hypotheses concerning several parameters when the number of observations is large,” in Transactions of the American Mathematical Society, vol. 54 (1943), pp. 426–482.
  37. A. Agresti and B. A. Coull, “Approximate is better than ‘exact’ for interval estimation of binomial proportions,” Am. Stat.52, 119 (1998).
  38. J. W. Harrington, J. M. Ettinger, R. J. Hughes, and J. E. Nordholt, “Enhancing practical security of quantum key distribution with a few decoy states,” arXiv:quant-ph/0503002 (2005).
  39. P. Rice and J. W. Harrington, “Numerical analysis of decoy state quantum key distribution protocols,” arXiv:0901.0013 (2009).
  40. C. Clopper and E. S. Pearson, “The use of confidence or fiducial limits illustrated in the case of the binomial,” Biometrika26(4), 404–413 (1934). [CrossRef]
  41. R. Renner, “Symmetry of large physical systems implies independence of subsystems,” Nat. Phys.3(9), 645–649 (2007). [CrossRef]
  42. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
  43. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett.91(4), 041114 (2007). [CrossRef]
  44. C. Erven, X. Ma, R. Laflamme, and G. Weihs, “Entangled quantum key distribution with a biased basis choice,” New J. Phys.11(4), 045025 (2009). [CrossRef]
  45. J. Hasegawa, M. Hayashi, T. Hiroshima, A. Tanaka, and A. Tomita, “Experimental decoy state quantum key distribution with unconditional security incorporating finite statistics,” arXiv:0705.3081 (2007).
  46. D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, “Practical long-distance quantum key distribution system using decoy levels,” New J. Phys.11(4), 045009 (2009). [CrossRef]
  47. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics7(5), 378–381 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited