OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24590–24598

Efficient continuous-wave self-Raman Yb:KGW laser with a shift of 89 cm−1

M. T. Chang, W. Z. Zhuang, K. W. Su, Y. T. Yu, and Y. F. Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24590-24598 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated a continuous-wave (CW) self-Raman laser with high conversion efficiency by using Yb:KGW as the Raman crystal. The first Stokes line of wavelength centered at 1095.2 nm with spectral bandwidth of 8 nm and the cascaded Raman conversion wavelength at 1109.5 nm with spectral bandwidth of 3.4 nm were observed with a Raman shift of 89 cm−1 with respect to the fundamental laser wavelength at 1085.0 nm with spectral bandwidth of 10 nm. The CW Raman output power of 1.7 W was attained under the diode pump power of 7.8 W which corresponds to the slope efficiency and the diode-to-Stokes optical conversion efficiency of 26.6% and 21.8%, respectively.

© 2013 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 21, 2013
Revised Manuscript: September 21, 2013
Manuscript Accepted: September 24, 2013
Published: October 7, 2013

M. T. Chang, W. Z. Zhuang, K. W. Su, Y. T. Yu, and Y. F. Chen, "Efficient continuous-wave self-Raman Yb:KGW laser with a shift of 89 cm−1," Opt. Express 21, 24590-24598 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Lagatsky, A. Abdolvand, and N. V. Kuleshov, “Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser,” Opt. Lett.25(9), 616–618 (2000). [CrossRef] [PubMed]
  2. T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B97(4), 799–804 (2009). [CrossRef]
  3. Y. F. Chen, M. L. Ku, L. Y. Tsai, and Y. C. Chen, “Diode-pumped passively Q-switched picosecond Nd:GDxY1-xVO4 self-stimulated raman laser,” Opt. Lett.29(19), 2279–2281 (2004). [CrossRef] [PubMed]
  4. A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999). [CrossRef]
  5. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett.30(13), 1701–1703 (2005). [CrossRef] [PubMed]
  6. H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, L. X. Huang, and Y. D. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B103(3), 559–562 (2011). [CrossRef]
  7. V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B86(3), 511–514 (2007). [CrossRef]
  8. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett.35(5), 682–684 (2010). [CrossRef] [PubMed]
  9. Y. Tan, X. H. Fu, P. Zhai, and X. H. Zhang, “An efficient cw laser at 560 nm by intracavity sum-frequency mixing in a self-Raman Nd:LuVO4 laser,” Laser Phys.23(4), 045806 (2013). [CrossRef]
  10. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO(4) at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007). [CrossRef] [PubMed]
  11. L. Fan, Y. X. Fan, and H. T. Wang, “A compact efficient continuous-wave self-frequency Raman laser with a composite YVO4/Nd:YVO4/YVO4 crystal,” Appl. Phys. B101(3), 493–496 (2010). [CrossRef]
  12. V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B88(4), 499–501 (2007). [CrossRef]
  13. P. Dekker, J. M. Dawes, P. A. Burns, H. M. Pask, J. A. Piper, and T. Omatsu, “Power scaling of cw diode-pumped Yb:KGW self-Raman laser,” in Proceedings of the Conference on Lasers and Electro-Optics Europe (IEEE, 2003), pp. 50. [CrossRef]
  14. V. E. Kisel, V. G. Shcherbitsky, and N. V. Kuleshov, “Efficient self-frequency Raman conversion in a passively Q-switched diode-pumped Yb:KGd(WO4)2 laser,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 189.
  15. A. Major, R. Cisek, and V. Barzda, “Development of diode-pumped high average power continuous-wave and ultrashort pulse Yb:KGW lasers for nonlinear microscopy,” Proc. SPIE6108, 61080Y, 61080Y-8 (2006). [CrossRef]
  16. D. Kasprowicz, T. Runka, A. Majchrowski, and E. Michalski, “Low-temperature vibrational properties of KGd(WO4)2: (Er, Yb) single crystals studied by Raman spectroscopy,” J. Phys. Chem. Solids70(9), 1242–1247 (2009). [CrossRef]
  17. J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. Pask, “Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express20(9), 9841–9850 (2012). [CrossRef] [PubMed]
  18. D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett.36(7), 1083–1085 (2011). [CrossRef] [PubMed]
  19. Y. W. Wang, H. B. Cheng, Z. L. Zhu, J. L. Li, and J. H. Liu, “Structure and vibration spectrum of laser crystal Yb:KGd(WO4)2,” J. Inorg. Mater.20(6), 1295–1300 (2005).
  20. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999). [CrossRef]
  21. H. Zellmer, S. Buteau, A. Tünnermann, and H. Welling, “All fibre laser system with 0.1 W output power in blue spectral range,” Electron. Lett.33(16), 1383–1384 (1997). [CrossRef]
  22. E. B. Mejia, A. N. Starodumov, and Y. O. Barmenkov, “Blue and infrared up-conversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117 and 1.18 μm,” Appl. Phys. Lett.74(11), 1540–1542 (1999). [CrossRef]
  23. F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, “High-power quantum-dot lasers at 1100 nm,” Appl. Phys. Lett.76(5), 556–558 (2000). [CrossRef]
  24. S. D. Jackson, “2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm,” Appl. Phys. B76(7), 793–795 (2003). [CrossRef]
  25. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express16(14), 10690–10695 (2008). [CrossRef] [PubMed]
  26. S. Uemura and K. Torizuka, “Kerr-lens mode-locking scheme for diode-pumped Yb-doped-bulk lasers,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper MC36.
  27. A. A. Lagatsky, N. V. Kuleshov, and V. P. Mikhailov, “Diode-pumped CW lasing of Yb:KYW and Yb:KGW,” Opt. Commun.165(1–3), 71–75 (1999). [CrossRef]
  28. L. Fan, Y. X. Fan, Y. Q. Li, H. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett.34(11), 1687–1689 (2009). [CrossRef] [PubMed]
  29. A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express18(6), 5984–5992 (2010). [CrossRef] [PubMed]
  30. H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett.36(4), 579–581 (2011). [CrossRef] [PubMed]
  31. W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express19(7), 6938–6944 (2011). [CrossRef] [PubMed]
  32. D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 756–763 (2007). [CrossRef]
  33. J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett.6(4), 282–289 (2009). [CrossRef]
  34. J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments,” Appl. Phys. B89(2–3), 359–365 (2007). [CrossRef]
  35. A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloy. Comp.300–301(1–2), 300–302 (2000). [CrossRef]
  36. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett.30(18), 2454–2456 (2005). [CrossRef] [PubMed]
  37. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express16(26), 21958–21963 (2008). [CrossRef] [PubMed]
  38. T. Omatsu, M. Okida, A. Lee, and H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B108(1), 73–79 (2012). [CrossRef]
  39. Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum-frequency generation of diode-end-pumped Nd:YAG/SrWO4 Raman laser,” Laser Phys. Lett.7(7), 491–494 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited