OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24599–24610

Effects of crystallinity and point defects on optoelectronic applications of β-Ga2O3 epilayers

Parvaneh Ravadgar, Ray-Hua Horng, Shu-De Yao, Hsin-Ying Lee, Bing-Rui Wu, Sin-Liang Ou, and Li-Wei Tu  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24599-24610 (2013)
http://dx.doi.org/10.1364/OE.21.024599


View Full Text Article

Enhanced HTML    Acrobat PDF (1998 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study evaluates the effect of crystallinity and point defects on time-dependent photoresponsivity and the cathodoluminescence (CL) properties of β-Ga2O3 epilayers. A synchrotron high-resolution X-ray technique was used to understand the crystalline structure of samples. Rutherford backscattering spectroscopy was used to determine the net chemical composition of the samples to examine the type and ratio of their possible point defects. The results show that in functional time-dependent photoresponsivity of photodetectors based on β-Ga2O3 epilayers, point defects contribution overcomes the contribution of crystallinity. However, the crystalline structure affects the intensities and emission regions of CL spectra more than point defects.

© 2013 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(310.0310) Thin films : Thin films

ToC Category:
Thin Films

History
Original Manuscript: August 21, 2013
Revised Manuscript: September 27, 2013
Manuscript Accepted: September 30, 2013
Published: October 7, 2013

Citation
Parvaneh Ravadgar, Ray-Hua Horng, Shu-De Yao, Hsin-Ying Lee, Bing-Rui Wu, Sin-Liang Ou, and Li-Wei Tu, "Effects of crystallinity and point defects on optoelectronic applications of β-Ga2O3 epilayers," Opt. Express 21, 24599-24610 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24599


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, O. Ishiyama, M. Shinohara, M. Kubo, R. Miura, A. Miyamoto, “Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication,” Appl. Phys. Lett. 67(18), 2615–2617 (1995). [CrossRef]
  2. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science 300(5623), 1269–1272 (2003). [CrossRef] [PubMed]
  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  4. C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano 5(3), 2332–2339 (2011). [CrossRef] [PubMed]
  5. M. Barhoum, J. M. Morrill, D. Riassetto, M. H. Bartl, “Rapid sol-gel fabrication of high-quality thin-film stacks on planar and curved substrates,” Chem. Mater. 23(23), 5177–5184 (2011). [CrossRef]
  6. M. S. Su, C. Y. Kuo, M. C. Yuan, U. S. Jeng, C. J. Su, K. H. Wei, “Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives,” Adv. Mater. 23(29), 3315–3319 (2011). [CrossRef] [PubMed]
  7. Y. Hu, Y. Q. Chen, Y. C. Wu, M. J. Wang, G. J. Fang, C. Q. He, S. J. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009). [CrossRef]
  8. L. Hu, L. Wu, M. Liao, X. Fang, “High-performance NiCo2O4 nanofilm photodetectors fabricated by an interfacial self-assembly strategy,” Adv. Mater. 23(17), 1988–1992 (2011). [CrossRef] [PubMed]
  9. T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010). [CrossRef] [PubMed]
  10. H. K. Yadav, K. Sreenivas, V. Gupta, “Study of metal/ZnO based thin film ultraviolet photodetectors: The effect of induced charges on the dynamics of photoconductivity relaxation,” J. Appl. Phys. 107(4), 044507 (2010). [CrossRef]
  11. X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, W. Zhang, “Visible-NIR photodetectors based on CdTe nanoribbons,” Nanoscale 4(9), 2914–2919 (2012). [CrossRef] [PubMed]
  12. M. Chen, C. Ye, S. Zhou, L. Wu, “Recent advances in applications and performance of inorganic hollow spheres in some devices,” Adv. Mater. (to be published).
  13. W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, H. T. Hsueh, “A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film,” IEEE Sens. J. 11(4), 999–1003 (2011). [CrossRef]
  14. K. Wang, F. Chen, N. Allec, K. S. Karim, “Fast lateral amorphous-selenium metal–semiconductor–metal photodetector with high blue-to-ultraviolet responsivity,” IEEE Trans. Electron. Dev. 57(8), 1953–1958 (2010). [CrossRef]
  15. M. M. Cao, R. J. Chacon, C. E. Hunt, “A field emission light source using a reticulated vitreous carbon (RVC) cathode and cathodoluminescent phosphors,” J. Disp. Technol. 7(9), 467–472 (2011). [CrossRef]
  16. P. Ravadgar, R. H. Horng, T. Y. Wang, “Healing of surface states and point defects in single-crystalline β-Ga2O3 epilayer,” ECS J. Solid State Sci. Technol. 1(4), N58–N60 (2012). [CrossRef]
  17. P. Ravadgar, R. H. Horng, S. L. Ou, “A visualization of threading dislocations formation and dynamics in mosaic growth of GaN-based light emitting diode epitaxial layers on (0001) sapphire,” Appl. Phys. Lett. 101(23), 231911 (2012). [CrossRef]
  18. P. Erhart, A. Klein, K. Albe, “First-principles study of the structure and stability of oxygen defects in zinc oxide,” Phys. Rev. B 72(8), 085213 (2005). [CrossRef]
  19. J. F. Scott, M. Dawber, “Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics,” Appl. Phys. Lett. 76(25), 3801–3803 (2000). [CrossRef]
  20. A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, R. N. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001). [CrossRef]
  21. A. S. Foster, F. L. Gejo, A. L. Shluger, R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B 65(17), 174117 (2002). [CrossRef]
  22. J. B. Varley, J. R. Weber, A. Janotti, C. G. Van de Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97(14), 142106 (2010). [CrossRef]
  23. F. Devynck, M. Iannuzzi, M. Krack, “Frenkel pair recombinations in UO2: Importance of explicit description of polarizability in core-shell molecular dynamics simulations,” Phys. Rev. B 85(18), 184103 (2012). [CrossRef]
  24. B. J. Morgan, P. A. Madden, “Effects of lattice polarity on interfacial space charges and defect disorder in ionically conducting AgI heterostructures,” Phys. Rev. Lett. 107(20), 206102 (2011). [CrossRef] [PubMed]
  25. J. P. Crocombette, D. Torumba, A. Chartier, “Charge states of point defects in uranium oxide calculated with a local hybrid functional for correlated electrons,” Phys. Rev. B 83(18), 184107 (2011). [CrossRef]
  26. Z. L. Wang, J. S. Yin, Y. D. Jiang, “EELS analysis of cation valence states and oxygen vacancies in magnetic oxides,” Micron 31(5), 571–580 (2000). [CrossRef] [PubMed]
  27. A. Linsebigler, G. Lu, J. T. Yates, “CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption,” J. Chem. Phys. 103(21), 9438–9443 (1995). [CrossRef]
  28. J. Hao, M. Cocivera, “Optical and luminescent properties of undoped and rare-earth-doped Ga2O3 thin films deposited by spray pyrolysis,” J. Phys. D Appl. Phys. 35(5), 433–438 (2002). [CrossRef]
  29. C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, S. Y. Zhang, “Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires,” Appl. Phys. Lett. 78(21), 3202–3204 (2001). [CrossRef]
  30. S. C. Vanithakumari, K. K. Nanda, “A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors,” Adv. Mater. 21(35), 3581–3584 (2009). [CrossRef]
  31. D. M. Duffy, J. P. Hoare, P. W. Tasker, “Vacancy formation energies near the surface of an ionic crystal,” J. Phys. C Solid State Phys. 17(7), L195–L199 (1984). [CrossRef]
  32. W. Tian, C. Y. Zhi, T. Y. Zhai, S. M. Chen, X. Wang, M. Y. Liao, D. Golberg, Y. Bando, “In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse,” J. Mater. Chem. 22(34), 17984–17991 (2012). [CrossRef]
  33. W. Tian, C. Y. Zhi, T. Y. Zhai, X. Wang, M. Y. Liao, S. L. Li, S. M. Chen, D. Golberg, Y. Bando, “Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors,” Nanoscale 4(20), 6318–6324 (2012). [CrossRef] [PubMed]
  34. Y. B. Li, T. Tokizono, M. Y. Liao, M. Zhong, Y. Koide, I. Yamada, J. J. Delaunay, “Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection,” Adv. Funct. Mater. 20(22), 3972–3978 (2010). [CrossRef]
  35. T. C. Lovejoy, R. Chen, X. Zheng, E. G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S. T. Dunham, F. S. Ohuchi, M. A. Olmstead, “Band bending and surface defects in β-Ga2O3,” Appl. Phys. Lett. 100(18), 181602 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited