OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24611–24619

Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping

Xin-Hong Jia, Yun-Jiang Rao, Cheng-Xu Yuan, Jin Li, Xiao-Dong Yan, Zi-Nan Wang, Wei-Li Zhang, Han Wu, Ye-Yu Zhu, and Fei Peng  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24611-24619 (2013)
http://dx.doi.org/10.1364/OE.21.024611


View Full Text Article

Enhanced HTML    Acrobat PDF (1188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly. We utilized such a configuration to achieve ultra-long-distance distributed sensing based on Brillouin optical time-domain analysis (BOTDA). A repeater-less sensing distance record of up to 154.4km with 5m spatial resolution and ~ ± 1.4°C temperature uncertainty is successfully demonstrated.

© 2013 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3510) Lasers and laser optics : Lasers, fiber
(290.5870) Scattering : Scattering, Rayleigh
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 4, 2013
Revised Manuscript: September 29, 2013
Manuscript Accepted: September 29, 2013
Published: October 7, 2013

Citation
Xin-Hong Jia, Yun-Jiang Rao, Cheng-Xu Yuan, Jin Li, Xiao-Dong Yan, Zi-Nan Wang, Wei-Li Zhang, Han Wu, Ye-Yu Zhu, and Fei Peng, "Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping," Opt. Express 21, 24611-24619 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24611


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010). [CrossRef]
  2. A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010). [CrossRef]
  3. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010). [CrossRef]
  4. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011). [CrossRef]
  5. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010). [CrossRef] [PubMed]
  6. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011). [CrossRef] [PubMed]
  7. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011). [CrossRef] [PubMed]
  8. A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011). [CrossRef] [PubMed]
  9. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012). [CrossRef] [PubMed]
  10. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012). [CrossRef] [PubMed]
  11. S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express21(14), 16466–16472 (2013). [CrossRef] [PubMed]
  12. Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens.2(2), 97–117 (2012). [CrossRef]
  13. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012). [CrossRef] [PubMed]
  14. Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012). [CrossRef] [PubMed]
  15. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013). [CrossRef] [PubMed]
  16. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012). [CrossRef] [PubMed]
  17. X. H. Jia, Y. J. Rao, F. Peng, Z. N. Wang, W. L. Zhang, H. J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013). [CrossRef] [PubMed]
  18. X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421(842127), 842127 (2012). [CrossRef]
  19. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010). [CrossRef]
  20. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28(21), 3149–3155 (2010).
  21. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011). [CrossRef]
  22. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012). [CrossRef]
  23. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012). [CrossRef] [PubMed]
  24. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett.35(10), 1503–1505 (2010). [CrossRef] [PubMed]
  25. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011). [CrossRef] [PubMed]
  26. R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011). [CrossRef] [PubMed]
  27. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011). [CrossRef] [PubMed]
  28. X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012). [CrossRef]
  29. X. Angulo-Vinuesa, M. A. Soto, S. Martin-Lopez, S. Chin, J. D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Brillouin optical time-domain analysis over a 240 km-long fiber loop with no repeater,” OFS 2012, Proc. SPIE 8421, 8421C9 (2012).
  30. C. Headly and G. P. Agrawal, Raman Amplifiers in Fiber Optical Communication System (Elsevier, 2005).
  31. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited