OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24620–24629

Laser-induced selective crosslinking for scaling the heterointerfacial domain in polymer blends

Xinping Zhang and Hongwei Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24620-24629 (2013)
http://dx.doi.org/10.1364/OE.21.024620


View Full Text Article

Enhanced HTML    Acrobat PDF (869 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Organic blends containing heterojunction structures at the interfacial phase have been applied extensively in organic optoelectronic devices to modify charge transfer, separation, and recombination processes. Scaling and controlling the transition domains at the hetero-interface are of crucial importance for deep insights into the involved physics and for architecturing the devices with improved performance. However, it is difficult to recognize and characterize these transition domains directly using the conventional microscopic techniques, in particular when different molecules are dissolved in the same solvent with equal solubility. In this work, we introduce a technique defined as laser-induced selective cross-linking to isolate the interfacial phase from other phases into a directly measurable practicity. Thus, the hetero-domains become visualized and directly measurable. Based on the insolubility of the selectively cross-linked molecules in organic solvents, a lift-off process may remove the uncross-linked or incompletely cross-linked molecules, so that the hetero-domain is more clearly visualized and more precisely measured. A transition domain in a scale of about 200 nm is resolved in the F8BT/PFB blend film between their respectively rich phases after the selective cross-linking of the F8BT molecules by a blue laser. Furthermore, hetero-crosslinking between F8BT and PFB molecules was also resolved by both microscopic and near-field spectroscopic investigations.

© 2013 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(160.6000) Materials : Semiconductor materials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Materials

History
Original Manuscript: September 12, 2013
Revised Manuscript: September 27, 2013
Manuscript Accepted: September 30, 2013
Published: October 7, 2013

Citation
Xinping Zhang and Hongwei Li, "Laser-induced selective crosslinking for scaling the heterointerfacial domain in polymer blends," Opt. Express 21, 24620-24629 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett.48(2), 183 (1986). [CrossRef]
  2. F. Yang, M. Shtein, and S. R. Forrest, “Controlled growth of a molecular bulk heterojunction photovoltaic cell,” Nat. Mater.4(1), 37–41 (2005). [CrossRef]
  3. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995). [CrossRef]
  4. P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature425(6954), 158–162 (2003). [CrossRef] [PubMed]
  5. D. C. Coffey and D. S. Ginger, “Time-resolved electrostatic force microscopy of polymer solar cells,” Nat. Mater.5(9), 735–740 (2006). [CrossRef] [PubMed]
  6. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913 (1987). [CrossRef]
  7. S. Berleb, W. Brutting, and G. Paasch, “Interfacial charges in organic hetero-layer light emitting diodes probed by capacitance–voltage measurements,” Synth. Met.122(1), 37–39 (2001). [CrossRef]
  8. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater.9(6), 496–503 (2010). [CrossRef] [PubMed]
  9. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009). [CrossRef]
  10. F. C. Jamieson, E. B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, and J. R. Durrant, “Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells,” Chem. Sci.3(2), 485 (2012). [CrossRef]
  11. A. C. Morteani, A. S. Dhoot, J.-S. Kim, C. Silva, N. C. Greenham, C. Murphy, E. Moons, S. Ciná, J. H. Burroughes, and R. H. Friend, “Barrier-Free Electron–Hole Capture in Polymer Blend Heterojunction Light-Emitting Diodes,” Adv. Mater.15(20), 1708–1712 (2003). [CrossRef]
  12. Z.-L. Li, H.-F. Meng, S.-F. Horng, C.-S. Hsu, L.-C. Chen, and S.-M. Chang, “Strong red emission in heterojunctions of conjugated polymer blends,” Appl. Phys. Lett.84(24), 4944 (2004). [CrossRef]
  13. S. Y. Yang, X. L. Zhang, Y. B. Hou, Z. B. Deng, and X. R. Xu, “Charge carriers at organic heterojunction interface: Exciplex emission or electroplex emission?” J. Appl. Phys.101(9), 096101 (2007). [CrossRef]
  14. I. Gutiérrez Lezama, M. Nakano, N. A. Minder, Z. Chen, F. V. Di Girolamo, A. Facchetti, and A. F. Morpurgo, “Single-crystal organic charge-transfer interfaces probed using Schottky-gated heterostructures,” Nat. Mater.11(9), 788–794 (2012). [CrossRef] [PubMed]
  15. B. Park, S. Choi, S. Graham, and E. Reichmanis, “Memory and photovoltaic elements in organic field-effect transistors with acceptor/donor planar-hetero junction interfaces,” J. Phys. Chem. C116(17), 9390–9397 (2012). [CrossRef]
  16. C. R. McNeill, H. Frohne, J. L. Holdsworth, and P. C. Dastoor, “Near-Field Scanning Photocurrent Measurements of Polyfluorene Blend Devices: Directly Correlating Morphology with Current Generation,” Nano Lett.4(12), 2503–2507 (2004). [CrossRef]
  17. R. Riehn, R. Stevenson, D. Richards, D. J. Kang, M. Blamire, A. Downes, and F. Cacialli, “Local Probing of Photocurrent and Photoluminescence in a Phase-Separated Conjugated-Polymer Blend by Means of Near-Field Excitation,” Adv. Funct. Mater.16(4), 469–476 (2006). [CrossRef]
  18. I. A. Howard, J. M. Hodgkiss, X. P. Zhang, K. R. Kirov, H. A. Bronstein, C. K. Williams, R. H. Friend, S. Westenhoff, and N. C. Greenham, “Charge Recombination and Exciton Annihilation Reactions in Conjugated Polymer Blends,” J. Am. Chem. Soc.132(1), 328–335 (2010). [CrossRef] [PubMed]
  19. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell,” Adv. Mater.17(1), 66–71 (2005). [CrossRef]
  20. D. H. Wang, J. S. Moon, J. Seifter, J. Jo, J. H. Park, O. O. Park, and A. J. Heeger, “Sequential processing: control of nanomorphology in bulk heterojunction solar cells,” Nano Lett.11(8), 3163–3168 (2011). [CrossRef] [PubMed]
  21. A. C. Morteani, P. Sreearunothai, L. M. Herz, R. H. Friend, and C. Silva, “Exciton Regeneration at Polymeric Semiconductor Heterojunctions,” Phys. Rev. Lett.92(24), 247402 (2004). [CrossRef] [PubMed]
  22. A. Charas, H. Alves, L. Alcácer, and J. Morgado, “Use of cross-linkable polyfluorene in the fabrication of multilayer polyfluorene-based light-emitting diodes with improved efficiency,” Appl. Phys. Lett.89(14), 143519 (2006). [CrossRef]
  23. S. Inaoka, D. B. Roitman, and R. C. Advincula, “Cross-Linked Polyfluorene Polymer Precursors: Electrodeposition, PLED Device Characterization, and Two-Site Co-deposition with Poly(vinylcarbazole),” Chem. Mater.17(26), 6781–6789 (2005). [CrossRef]
  24. X. P. Zhang, H. M. Liu, H. W. Li, and T. R. Zhai, “Direct Nanopatterning Into Conjugated Polymers Using Interference Crosslinking,” Macromol. Chem. Phys.213(12), 1285–1290 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited