OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24711–24720

Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure

Elton Soares de Lima Filho, Galina Nemova, Sébastien Loranger, and Raman Kashyap  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24711-24720 (2013)
http://dx.doi.org/10.1364/OE.21.024711


View Full Text Article

Enhanced HTML    Acrobat PDF (1672 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report for the first time the experimental demonstration of optical cooling of a bulk crystal at atmospheric pressure. The use of a fiber Bragg grating (FBG) sensor to measure laser-induced cooling in real time is also demonstrated for the first time. A temperature drop of 8.8 K from the chamber temperature was observed in a Yb:YAG crystal in air when pumped with 4.2 W at 1029 nm. A background absorption of 2.9 × 10−4 cm−1 was estimated with a pump wavelength at 1550 nm. Simulations predict further cooling if the pump power is optimized for the sample’s dimensions.

© 2013 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.6810) Lasers and laser optics : Thermal effects
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 14, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: October 1, 2013
Published: October 8, 2013

Citation
Elton Soares de Lima Filho, Galina Nemova, Sébastien Loranger, and Raman Kashyap, "Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure," Opt. Express 21, 24711-24720 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24711


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. A-Hadron. Nucl.57, 739–746 (1929).
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995). [CrossRef]
  3. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013). [CrossRef] [PubMed]
  4. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron.35(1), 115–122 (1999). [CrossRef]
  5. G. Nemova and R. Kashyap, “Athermal continuous-wave fiber amplifier,” Opt. Commun.282(13), 2571–2575 (2009). [CrossRef]
  6. G. Nemova and R. Kashyap, “Radiation-balanced amplifier with two pumps and a single system of ions,” J. Opt. Soc. Am. B28(9), 2191–2194 (2011). [CrossRef]
  7. S. R. Bowman, N. W. Jenkins, B. Feldman, and S. O'Connor, “Demonstration of a radiatively cooled laser,” in Summaries of PapersPresented at theConf. Lasers Electro-Opt., 2002)
  8. S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010). [CrossRef]
  9. J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013). [CrossRef] [PubMed]
  10. G. Nemova and R. Kashyap, “Laser cooling with lead-salt colloidal quantum dots doped in a glass host,” Proc. SPIE 8275, 82750B2-8275B8 (2012).
  11. G. Nemova, E. Soares de Lima Filho, S. Loranger, and R. Kashyap, “Laser cooling with nanoparticles,” Proc. SPIE 8412,84121P1–84121P14 (2012).
  12. D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express18(17), 18061–18066 (2010). [CrossRef] [PubMed]
  13. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys.90(9), 4815–4819 (2001). [CrossRef]
  14. N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5.,” Opt. Express17(7), 5466–5472 (2009). [CrossRef] [PubMed]
  15. V. K. Malyutenko, V. V. Bogatyrenko, and O. Y. Malyutenko, “Radiative cooling by light down conversion of InGaN light emitting diode bonded to a Si wafer,” Appl. Phys. Lett.102(24), 241102 (2013). [CrossRef]
  16. J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett.38(4), 422–424 (2013). [CrossRef] [PubMed]
  17. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin.133, 5–9 (2013). [CrossRef]
  18. D. Seletskiy, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K1-72280K5 (2009).
  19. E. de Lima Filho, M. Gagné, G. Nemova, M. Saad, S. R. Bowman, and R. Kashyap, “Sensing of laser cooling with optical fibres,” in 7th International Workshop on Fibre Optics and Passive Components, (2011), pp. 1–5. [CrossRef]
  20. X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21K starting from room temperature,” Opt. Lett.23(8), 639–641 (1998). [CrossRef] [PubMed]
  21. G. Nemova and R. Kashyap, “Optimization of the dimensions of an Yb3+:ZBLANP optical fiber sample for laser cooling of solids,” Opt. Lett.33(19), 2218–2220 (2008). [CrossRef] [PubMed]
  22. T. R. Gosnell, “Laser cooling of a solid by 65K starting from room temperature,” Opt. Lett.24(15), 1041–1043 (1999). [CrossRef] [PubMed]
  23. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics12(12), 693–699 (2007). [CrossRef]
  24. R. Kashyap and G. Nemova, “Laser induced cooling of solids,” Phys. Status Solidi C8(1), 144–150 (2011). [CrossRef]
  25. R. Siegel and J. R. Howell, Thermal Radiation Heat Tranfer, Series in Thermal and Fluids Engineering (Hemisphere Publishing Corporation / McGraw-Hill Book Company, 1981).
  26. D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron.47(1), 3–12 (2011). [CrossRef]
  27. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006). [CrossRef]
  28. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B71(6), 807–811 (2000). [CrossRef]
  29. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993). [CrossRef]
  30. M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010). [CrossRef]
  31. R. Kashyap, Fiber Bragg Gratings (Academic Press, 2009).
  32. D. Sengupta, M. S. Shankar, P. Kishore, P. S. Reddy, R. Prasad, P. V. Rao, and K. Srimannarayana, “An FBG sensor for strain and temperature discrimination at cryogenic regime,” in Asia Communications and Photonics Conference and Exhibition, (Optical Society of America, 2011), paper 831106. http://www.opticsinfobase.org/abstract.cfm?URI=ACP-2011-831106 [CrossRef]
  33. P. Shi, B. Bai, L. Zhang, L. Li, and Y. Xin, “Semianalytical thermal analysis of the heat capacity of YAG laser rods,” Appl. Opt.48(35), 6701–6707 (2009). [CrossRef] [PubMed]
  34. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993). [CrossRef]
  35. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136(4A), A954–A957 (1964). [CrossRef]
  36. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001). [CrossRef]
  37. D. T. Nguyen, R. Thapa, D. Rhonehouse, J. Zong, A. Miller, G. Hardesty, N. H. Kwong, R. Binder, and A. Chavez-Pirson, “Towards all-fiber optical coolers using Tm-doped glass fibers,” Proc. SPIE 8638, 86380G1–86380G9. [CrossRef]
  38. G. Nemova and R. Kashyap, “High efficiency solid state laser cooling in Yb3+:ZBLANP fiber with tilted fiber Bragg grating structures,” Phys. Status Solidi C6(S1), S248–S250 (2009). [CrossRef]
  39. G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B26(12), 2237–2241 (2009). [CrossRef]
  40. G. Nemova and R. Kashyap, “Raman fiber amplifier with integrated cooler,” J. Lightwave Technol.27(24), 5597–5601 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited