OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24912–24921

Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial

He-Xiu Xu, Guang-Ming Wang, Mei Qing Qi, Tong Cai, and Tie Jun Cui  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24912-24921 (2013)
http://dx.doi.org/10.1364/OE.21.024912


View Full Text Article

Enhanced HTML    Acrobat PDF (8692 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: We propose a kind of chiral metamaterial inspired from the fractal concept. The Hilbert fractal perturbation in the twisted split ring resonator element results in compact metamaterial and breaking mirror symmetry, which readily forms chirality over triple bands. The discrepancy between co-polarization conversion and cross-polarization conversion over multiple bands can be explored for multifunctional devices. A multiband circular polarizer is then numerically and experimentally studied in the X band based on the bilayered twisted Hilbert resonator with mutual 90° rotation. The ability of transforming linearly polarized incident waves to circularly polarized waves is unambiguously demonstrated with high conversion efficiency and large polarization extinction ratio of more than 20 dB across dual bands. Moreover, exceptionally strong optical activity and circular dichroism are also observed.

© 2013 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(260.5740) Physical optics : Resonance
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: September 4, 2013
Manuscript Accepted: September 27, 2013
Published: October 10, 2013

Citation
He-Xiu Xu, Guang-Ming Wang, Mei Qing Qi, Tong Cai, and Tie Jun Cui, "Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial," Opt. Express 21, 24912-24921 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Y. Chin, J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express17(9), 7640–7647 (2009). [CrossRef] [PubMed]
  2. Y. Ye and S. He, “90o polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010). [CrossRef]
  3. J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011). [CrossRef]
  4. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011). [CrossRef]
  5. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012). [CrossRef]
  6. Y. Cheng, Y. Nie, X. Wang, and R. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys., A Mater. Sci. Process.111(1), 209–215 (2013). [CrossRef]
  7. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  8. M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010). [CrossRef]
  9. Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett.99(3), 031111 (2011). [CrossRef]
  10. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012). [CrossRef] [PubMed]
  11. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011). [CrossRef] [PubMed]
  12. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express20(14), 16050–16058 (2012). [CrossRef] [PubMed]
  13. S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett.102(10), 103503 (2013). [CrossRef]
  14. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006). [CrossRef] [PubMed]
  15. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010). [CrossRef] [PubMed]
  16. M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express19(9), 8347–8356 (2011). [CrossRef] [PubMed]
  17. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012). [CrossRef] [PubMed]
  18. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012). [CrossRef]
  19. J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012). [CrossRef] [PubMed]
  20. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009). [CrossRef]
  21. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010). [CrossRef]
  22. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008). [CrossRef] [PubMed]
  23. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010). [CrossRef] [PubMed]
  24. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007). [CrossRef] [PubMed]
  25. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011). [CrossRef] [PubMed]
  26. D. Zari, H. Oraizi, and M. Soleimani, “Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers,” Prog. Electromagnetics Res.123, 337–354 (2012). [CrossRef]
  27. J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012). [CrossRef]
  28. H. X. Xu, G. M. Wang, C. X. Zhang, and Q. Peng, “Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion-loss,” AEU, Int. J. Electron. Commun.65(11), 901–905 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited