OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24929–24941

Spectral variability of sea surface skylight reflectance and its effect on ocean color

Ting-Wei Cui, Qing-Jun Song, Jun-Wu Tang, and Jie Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24929-24941 (2013)
http://dx.doi.org/10.1364/OE.21.024929


View Full Text Article

Enhanced HTML    Acrobat PDF (1440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, sea surface skylight spectral reflectance ρ(λ) was retrieved by means of the non-linear spectral optimization method and a bio-optical model. The spectral variability of ρ(λ) was found to be mainly influenced by the uniformity of the incident skylight, and a model is proposed to predict the ρ(λ) spectral dependency based on skylight reflectance at 750 nm. It is demonstrated that using the spectrally variable ρ(λ), rather than a constant, yields an improved agreement between the above-water remote sensing reflectance Rrs(λ) estimates and concurrent profiling ones. The findings of this study highlight the necessity to re-process the relevant historical above-water data and update ocean color retrieval algorithms accordingly.

© 2013 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 26, 2013
Revised Manuscript: September 7, 2013
Manuscript Accepted: September 27, 2013
Published: October 11, 2013

Citation
Ting-Wei Cui, Qing-Jun Song, Jun-Wu Tang, and Jie Zhang, "Spectral variability of sea surface skylight reflectance and its effect on ocean color," Opt. Express 21, 24929-24941 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24929


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. P. Lee, Y. H. Ahn, C. Mobley, and R. Arnone, “Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform,” Opt. Express18(25), 26313–26324 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26313 . [CrossRef] [PubMed]
  2. J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurement and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3, NASA/TM-2002–210004, J. L. Mueller and G. S. Fargion, eds. (2002), pp. 171–182.
  3. S. B. Hooker, G. Zibordi, J.-F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt.43(21), 4254–4268 (2004). [CrossRef] [PubMed]
  4. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt.38(36), 7442–7455 (1999). [CrossRef] [PubMed]
  5. G. Zibordi, S. B. Hooker, J. F. Berthon, and D. D. Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Ocean. Technol.19(5), 808–819 (2002). [CrossRef]
  6. G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Rem. Sens.42(2), 401–415 (2004). [CrossRef]
  7. G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol.26(8), 1634–1651 (2009). [CrossRef]
  8. B. Fougnie, R. Frouin, P. Lecomte, and P.-Y. Deschamps, “Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance,” Appl. Opt.38(18), 3844–3856 (1999). [CrossRef] [PubMed]
  9. D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt.39(3), 456–469 (2000). [CrossRef] [PubMed]
  10. S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol.19(4), 486–515 (2002). [CrossRef]
  11. D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters,” J. Opt. A, Pure Appl. Opt.6(7), 690–697 (2004). [CrossRef]
  12. G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing reflectance: an inter-comparison,” Ocean Sci. Discuss9(2), 787–833 (2012). [CrossRef]
  13. T. Harmel, A. Gilerson, A. Tonizzo, J. Chowdhary, A. Weidemann, R. Arnone, and S. Ahmed, “Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements,” Appl. Opt.51(35), 8324–8340 (2012). [CrossRef] [PubMed]
  14. Z. Lee, K. L. Carder, T. G. Peacock, and R. G. Steward, “Remote sensing reflectance measured with and without a vertical polarizer,” Proc. SPIE2963, 483–488 (1997). [CrossRef]
  15. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt.38(18), 3831–3843 (1999). [CrossRef] [PubMed]
  16. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt.43(25), 4957–4964 (2004). [CrossRef] [PubMed]
  17. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt.37(27), 6329–6338 (1998). [CrossRef] [PubMed]
  18. Z. P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res.106(C6), 11639–11651 (2001). [CrossRef]
  19. J. W. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, and Q. J. Song, “The methods of water spectra measurement and analysis I: above-water method,” Journal of Remote Sensing8(1), 37–44 (2004).
  20. K. Ruddick, V. De Cauwer, Y. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance – the similarity spectrum for turbid waters,” Limnol. Oceanogr.51(2), 1167–1179 (2006). [CrossRef]
  21. J. Piskozub, “Effect of ship shadow on in-water irradiance measurements,” Oceanologia46(1), 103–112 (2004).
  22. H. R. Gordon, “Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations,” Appl. Opt.24(23), 4172–4182 (1985). [CrossRef] [PubMed]
  23. H. R. Gordon and K. Ding, “Self shading of in-water optical instruments,” Limnol. Oceanogr.37(3), 491–500 (1992). [CrossRef]
  24. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function,” Appl. Opt.41(30), 6289–6306 (2002). [CrossRef] [PubMed]
  25. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998). [CrossRef]
  26. B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010). [CrossRef]
  27. C. Hu, Z. P. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res.117(C1), C01011 (2012), doi:. [CrossRef]
  28. J. W. Tang, X. M. Wang, Q. J. Song, T. J. Li, J. Z. Chen, H. J. Huang, and J. P. Ren, “The statistic inversion algorithms of water constituents for the Huanghai Sea and the East China Sea,” Acta Oceanol. Sin.23(4), 617–626 (2004).
  29. X. M. Wang, J. W. Tang, J. Ding, C. F. Ma, T. J. Li, X. Y. Wang, and D. Y. Bi, “The retrieval algorithms of diffuse attenuation and transparency for the Case-II waters of the Huanghai Sea and the East China Sea,” Acta Oceanol. Sin.27(5), 38–45 (2005).
  30. S. Tiwari and P. Shanmugam, “An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters,” Estuar. Coast. Shelf Sci.93(4), 396–402 (2011). [CrossRef]
  31. D. Doxaran, R. Cherukuru, and S. Lavender, “Inherent and apparent optical properties of turbid estuarine waters: measurements, modelling and application to remote sensing,” Appl. Opt.45, 2310–2324 (2006). [CrossRef] [PubMed]
  32. C. D. Mobley, D. Stramski, W. P. Bissett, and E. Boss, “Optical modeling of ocean water: Is the Case 1-Case 2 classification still useful? ” Oceanography (Wash. D.C.)17(2), 61–67 (2003).
  33. Z. P. Lee, N. Pahlevan, Y. H. Ahn, S. Greb, and D. O’Donnell, “Robust approach to directly measuring water-leaving radiance in the field,” Appl. Opt.52(8), 1693–1701 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited