OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25035–25044

Manipulation of dark photonic angular momentum states via magneto-optical effect for tunable slow-light performance

Mu Yang, Teng-Fei Li, Qi-Wen Sheng, Tian-Jing Guo, Qing-Hua Guo, Hai-Xu Cui, and Jing Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25035-25044 (2013)
http://dx.doi.org/10.1364/OE.21.025035


View Full Text Article

Enhanced HTML    Acrobat PDF (2016 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel scheme in realizing tunable slow-light performance by manipulating dark photonic angular momentum states (PAMSs) in metamaterials via the magneto-optical effect. We show that by applying a static magnetic field B, some pairs of sharp transmission dips can be observed in the background transparency window of a complex metamaterial design. Each pair of transmission dips are related to the excitation of dark PAMSs with opposite topological charges −m and +m, with a lifted degeneracy due to the classic analogue of Zeeman effect. Nonreciprocal characteristics can be observed in the distributions of field amplitude and transverse energy flux. The performance of slow light, including the group index ng, its abnormal feature, the associated strong absorption and the dependence with B are also discussed.

© 2013 OSA

OCIS Codes
(020.7490) Atomic and molecular physics : Zeeman effect
(160.3820) Materials : Magneto-optical materials
(270.1670) Quantum optics : Coherent optical effects
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: July 22, 2013
Revised Manuscript: September 24, 2013
Manuscript Accepted: September 24, 2013
Published: October 14, 2013

Citation
Mu Yang, Teng-Fei Li, Qi-Wen Sheng, Tian-Jing Guo, Qing-Hua Guo, Hai-Xu Cui, and Jing Chen, "Manipulation of dark photonic angular momentum states via magneto-optical effect for tunable slow-light performance," Opt. Express 21, 25035-25044 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett.97, 263902 (2006). [CrossRef]
  2. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett.98, 157403 (2007). [CrossRef] [PubMed]
  3. L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mat.8, 643–647 (2009). [CrossRef]
  4. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010). [CrossRef] [PubMed]
  5. J. Du, Z. Lin, S. T. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, and F. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett.106, 203903 (2011). [CrossRef] [PubMed]
  6. J. Du, Z. Lin, S. T. Chui, G. Dong, and W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett.110, 163902 (2013). [CrossRef] [PubMed]
  7. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun.209, 17–22 (2002). [CrossRef]
  8. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B79, 1–8 (2004). [CrossRef]
  9. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett.94,193902 (2005). [CrossRef] [PubMed]
  10. P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express18, 10896–10904 (2010). [CrossRef] [PubMed]
  11. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mat.9, 407–412 (2010). [CrossRef]
  12. Q. H. Guo, M. Kang, T. F. Li, H. X. Cui, and J. Chen, “Slow light from sharp dispersion by exciting dark photonic angular momentum states,” Opt. Lett.38, 250–252 (2013). [CrossRef] [PubMed]
  13. Q. H. Guo, M. Yang, T. F. Li, T. J. Guo, H. X. Cui, M. Kang, and J. Chen, “Circular polarizer via selective excitation of photonic angular momentum states in metamaterials,” Appl. Phys. Lett.102, 211906 (2013). [CrossRef]
  14. J. Wang, K. H. Fung, H. Y. Dong, and N. X. Fang, “Zeeman splitting of photonic angular momentum states in a gyromagnetic cylinder,” Phys. Rev. B84, 235122 (2011). [CrossRef]
  15. T. F. Li, T. J. Guo, H. X. Cui, M. Yang, M. Kang, Q. H. Guo, and J. Chen, “Guided modes in magneto-optical waveguides and the role in resonant transmission,” Opt. Express21, 9563–9572 (2013). [CrossRef] [PubMed]
  16. J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett.89, 251115 (2006). [CrossRef]
  17. Y. M. Bahk, J. W. Choi, J. Kyoung, H. R. Park, K. J. Ahn, and D. S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express20, 25644–25653 (2012). [CrossRef] [PubMed]
  18. Y. M. Bahk, H. R. Park, K. J. Ahn, H. S. Kim, Y. H. Ahn, D. S. Kim, J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, “Anomalous band formation in arrays of terahertz nanoresonators,” Phys. Rev. Lett.106, 013902 (2011). [CrossRef] [PubMed]
  19. H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martin-Moreno, F. J. Garcia-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5, 8340–8345 (2011). [CrossRef] [PubMed]
  20. H. R. Park, Y. M. Bahk, J. H. Choe, S. Han, S. S. Choi, K. J. Ahn, N. Park, Q. H. Park, and D. S. Kim, “Terahertz pinch harmonics enabled by single nano rods,” Opt. Express19, 24775–24781 (2011). [CrossRef] [PubMed]
  21. K. Kozuki, T. Nagashima, and M. Hangyo, “Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy,” Opt. Express19, 24950–24956 (2011). [CrossRef]
  22. J. Nishitani, T. Nagashima, and M. Hangyo, “Terahertz radiation from antiferromagnetic MnO excited by optical laser pulses,” Appl. Phys. Lett.103, 081907 (2013). [CrossRef]
  23. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100, 023902 (2008). [CrossRef] [PubMed]
  24. H. Yin and P. M. Hui, “Controlling enhanced transmission through semiconductor gratings with subwavelength slits by a magnetic field: Numerical and analytical results,” Appl. Phys. Lett.95, 011115 (2009). [CrossRef]
  25. A. K. Geim, “Graphene: status and prospects,” Science324, 1530–1534 (2009). [CrossRef] [PubMed]
  26. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phy.3, 36–40 (2007). [CrossRef]
  27. P. B. Catryssea and S. H. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett.94, 231111 (2009). [CrossRef]
  28. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon.2, 287–318 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited