OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25120–25147

Integrated waveguide Bragg gratings for microwave photonics signal processing

Maurizio Burla, Luis Romero Cortés, Ming Li, Xu Wang, Lukas Chrostowski, and José Azaña  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25120-25147 (2013)
http://dx.doi.org/10.1364/OE.21.025120


View Full Text Article

Enhanced HTML    Acrobat PDF (11758 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Integrated Microwave photonics (IMWP) signal processing using Photonic Integrated Circuits (PICs) has attracted a great deal of attention in recent years as an enabling technology for a number of functionalities not attainable by purely microwave solutions. In this context, integrated waveguide Bragg grating (WBG) devices constitute a particularly attractive approach thanks to their compactness and flexibility in producing arbitrarily defined amplitude and phase responses, by directly acting on coupling coefficient and perturbations of the grating profile. In this article, we review recent advances in the field of integrated WBGs applied to MWP, analyzing the advantages leveraged by an integrated realization. We provide a perspective on the exciting possibilities offered by the silicon photonics platform in the field of MWP, potentially enabling integration of highly-complex active and passive functionalities with high yield on a single chip, with a particular focus on the use of WBGs as basic building blocks for linear filtering operations. We demonstrate the versatility of WBG-based devices by proposing and experimentally demonstrating a novel, continuously-tunable, integrated true-time-delay (TTD) line based on a very simple dual phase-shifted WBG (DPS-WBG).

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(130.6622) Integrated optics : Subsystem integration and techniques
(070.7145) Fourier optics and signal processing : Ultrafast processing

History
Original Manuscript: July 5, 2013
Revised Manuscript: September 22, 2013
Manuscript Accepted: September 27, 2013
Published: October 15, 2013

Virtual Issues
Microwave Photonics (2013) Optics Express

Citation
Maurizio Burla, Luis Romero Cortés, Ming Li, Xu Wang, Lukas Chrostowski, and José Azaña, "Integrated waveguide Bragg gratings for microwave photonics signal processing," Opt. Express 21, 25120-25147 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon.1, 319–330 (2007). [CrossRef]
  2. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol.24, 4628–4641 (2006). [CrossRef]
  3. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54, 832–846 (2006). [CrossRef]
  4. W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991). [CrossRef]
  5. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013). [CrossRef]
  6. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993). [CrossRef]
  7. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).
  8. T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol.15, 1277–1294 (1997). [CrossRef]
  9. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001). [CrossRef]
  10. M. Li and H. Li, “Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating,” Opt. Express16, 9821–9828 (2008). [CrossRef] [PubMed]
  11. M. Li, J. Hayashi, and H. Li, “Advanced design of a complex fiber Bragg grating for a multichannel asymmetrical triangular filter,” J. Opt. Soc. Am. B26, 228–234 (2009). [CrossRef]
  12. B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000). [CrossRef]
  13. H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol.25, 2739–2750 (2007). [CrossRef]
  14. L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE8, 1656–1658 (1996). [CrossRef]
  15. I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett.8, 1331–1333 (1996). [CrossRef]
  16. D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett.13, 726–728 (2001). [CrossRef]
  17. M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating,” Opt. Express16, 19388–19394 (2008). [CrossRef]
  18. A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66, 1053–1055 (1995). [CrossRef]
  19. M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag.49, s45–S52 (2011). [CrossRef]
  20. J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett.22, 1422–1424 (2010). [CrossRef]
  21. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient raman fiber laser,” Opt. Express17, 23678–23683 (2009). [CrossRef]
  22. Y.-J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Laser Eng.31, 297–324 (1999). [CrossRef]
  23. Y. X. Luo, “Study of fiber Bragg grating sensor in dam safety monitoring,” Applied Mechanics and Materials312, 736–740 (2013). [CrossRef]
  24. Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett.20, 1718–1720 (2008). [CrossRef]
  25. M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett.34, 1717–1719 (2009). [CrossRef] [PubMed]
  26. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express14, 1106–1112 (2006). [CrossRef] [PubMed]
  27. A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett.31, 1485–1486 (1995). [CrossRef]
  28. H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9, 241–243 (1997). [CrossRef]
  29. A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997). [CrossRef]
  30. Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt.42, 2273–2277 (2003). [CrossRef] [PubMed]
  31. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett.9, 1529–1531 (1997). [CrossRef]
  32. J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett.14, 687–689 (2002). [CrossRef]
  33. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol.24, 201–209 (2006). [CrossRef]
  34. D. Hunter and R. Minasian, “Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings,” Electron. Lett.31, 1010–1012 (1995). [CrossRef]
  35. X. Yi and R. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech.54, 880–886 (2006). [CrossRef]
  36. F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett.30, 2203–2205 (2005). [CrossRef] [PubMed]
  37. G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53, 3090–3097 (2005). [CrossRef]
  38. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett.14, 1020–1022 (2004). [CrossRef]
  39. X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech.54, 804–809 (2006). [CrossRef]
  40. J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18, 2587–2589 (2006). [CrossRef]
  41. Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011). [CrossRef]
  42. J. Yao, “Photonic generation of microwave arbitrary waveforms,” Optics Communications284, 3723–3736 (2011). Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization. [CrossRef]
  43. M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol.26, 628–635 (2008). [CrossRef]
  44. J. A. na and L. R. Chen, “Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping,” J. Opt. Soc. Am. B19, 2758–2769 (2002). [CrossRef]
  45. M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett.23, 314–316 (2011). [CrossRef]
  46. M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23, 251–253 (2011). [CrossRef]
  47. H. Shahoei, J. Yao, and , “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express21, 7521–7527 (2013). [CrossRef] [PubMed]
  48. R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett.38, 1419–1421 (2013). [CrossRef] [PubMed]
  49. R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett.25, 910–913 (2013). [CrossRef]
  50. R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE5, 7100311–7100311 (2013). [CrossRef]
  51. R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express21, 6249–6256 (2013). [CrossRef] [PubMed]
  52. R. Ashrafi and J. Azaña, “Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings,” Opt. Lett.37, 2604–2606 (2012). [CrossRef] [PubMed]
  53. T. E. Murphy, J. Ferrera, J. T. Hastings, M. J. Khan, E. M. Koontz, M. H. Lim, H. Haus, L. A. Kolodziejski, and H. I. Smith, “Development of fabrication techniques for building integrated-optical grating-based filters,” [Online.] Available: http://nanoweb.mit.edu/annual-report00/16 .
  54. T. Berceli and P. Herczfeld, “Microwave photonics - a historical perspective,” IEEE Trans. Microw. Theory Tech.58, 2992–3000 (2010). [CrossRef]
  55. R. Won, “Microwave photonics shines,” Nature Photon.5, 736 (2011). [CrossRef]
  56. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013). [CrossRef]
  57. S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
  58. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010). [CrossRef]
  59. M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.
  60. T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013). [CrossRef]
  61. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011). [CrossRef] [PubMed]
  62. B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
  63. M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013). [CrossRef]
  64. T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
  65. M. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron.46, 774–782 (2010). [CrossRef]
  66. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20, 15547–15558 (2012). [CrossRef] [PubMed]
  67. M. Verbist, D. V. Thourhout, and W. Bogaerts, “Weak gratings in silicon-on-insulator for spectral filters based on volume holography,” Opt. Lett.38, 386–388 (2013). [CrossRef] [PubMed]
  68. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express21, 8953–8963 (2013). [CrossRef] [PubMed]
  69. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60, 1287–1296 (2012). [CrossRef]
  70. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18, 27359–27370 (2010). [CrossRef]
  71. B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express16, 2398–2404 (2008). [CrossRef] [PubMed]
  72. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett.13, 1334–1336 (2001). [CrossRef]
  73. M. Sumetsky, B. Eggleton, and C. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express10, 332–340 (2002). [CrossRef] [PubMed]
  74. X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett.16, 305–307 (2004). [CrossRef]
  75. M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1. [CrossRef]
  76. L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013). [CrossRef]
  77. N. Na, H. Frish, I-Wei Hsieh, O. Harel, R. George, A. Barkai, and H. Rong, “Efficient broadband silicon-on-insulator grating coupler with low backreflection,” Opt. Lett.36, 2101–2103 (2011) [CrossRef] [PubMed]
  78. S. Khan and S. Fathpour, “Electronically tunable silicon photonic delay lines,” in “2010 23rd Annual Meeting of the IEEE Photonics Society,” (2010), pp. 234–235. [CrossRef]
  79. I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20, 11241–11246 (2012). [CrossRef] [PubMed]
  80. X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8. [CrossRef]
  81. K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express19, 19514–19522 (2011). [CrossRef] [PubMed]
  82. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010). [CrossRef] [PubMed]
  83. M. J. Khan, Integrated Optical Filters using Bragg Gratings and Resonators (Ph.D. thesis, Massachussets Institute of Technology, 2002).
  84. M. Strain, Integrated Chirped Bragg Gratings for Dispersion Control (Ph.D. thesis, University of Glasgow, 2007), http://theses.gla.ac.uk/440/ .
  85. M. G. Wickham, “Integrated optical time delay unit,” United States Patent (1997).
  86. M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005). [CrossRef]
  87. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007). [CrossRef]
  88. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24, 711–713 (1999). [CrossRef]
  89. M. Spasojevic and L. R. Chen, “Discretely tunable optical delay lines using serial and step-chirped sidewall Bragg gratings in SOI,” Electron. Lett.49(2013). [CrossRef]
  90. M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings and serial grating arrays,” in “Photonics North,” (2013).
  91. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawide-band pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett.36, 2363–2365 (2011). [CrossRef] [PubMed]
  92. D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19, 24838–24848 (2011). [CrossRef]
  93. J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” Photonics Journal, IEEE2, 359–386 (2010). [CrossRef]
  94. M. A. Preciado and M. A. Muriel, “Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission,” Opt. Lett.33, 2458–2460 (2008). [CrossRef] [PubMed]
  95. L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett.19, 1209–1211 (2007). [CrossRef]
  96. M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17, 19798–19807 (2009). [CrossRef] [PubMed]
  97. M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express15, 6152–6166 (2007). [CrossRef] [PubMed]
  98. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett.38, 727–729 (2013). [CrossRef] [PubMed]
  99. M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35, 223–225 (2010). [CrossRef] [PubMed]
  100. M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett.22, 1559–1561 (2010). [CrossRef]
  101. M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett.34, 334–336 (2009). [CrossRef] [PubMed]
  102. C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013). [CrossRef] [PubMed]
  103. J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun.284, 3251–3257 (2011). [CrossRef]
  104. C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.
  105. E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett.37, 181–183 (2012). [CrossRef] [PubMed]
  106. M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012). [CrossRef]
  107. X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.
  108. R. J. Mailloux, Phased Array Antenna Handbook (Artech House, Boston, MA, 2005).
  109. J. Yao, “Microwave photonics,” J. Lightw. Technol.27, 314–335 (2009). [CrossRef]
  110. X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013). [CrossRef]
  111. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19, 21475–21484 (2011). [CrossRef] [PubMed]
  112. A. Loayssa and F. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18, 208–210 (2006). [CrossRef]
  113. M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013). [CrossRef]
  114. M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012). [CrossRef] [PubMed]
  115. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011). [CrossRef] [PubMed]
  116. X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.
  117. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36, 3999–4001 (2011). [CrossRef] [PubMed]
  118. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013). [CrossRef] [PubMed]
  119. D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express19, 2401–2409 (2011). [CrossRef] [PubMed]
  120. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013). [CrossRef] [PubMed]
  121. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010). [CrossRef]
  122. J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves [Online.] Available: http://www.iteam.upv.es/revista/2012/5_ITEAM_2012.pdf (2012).
  123. I. Gasulla and J. Capmany, “Analog filtered links: A unifying approach for microwave photonic systems,” in “14th International Conference on Transparent Optical Networks (ICTON),” (2012), pp. 1–4. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited