OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25159–25166

A novel planar metamaterial design for electromagnetically induced transparency and slow light

Junqiao Wang, Baohe Yuan, Chunzhen Fan, Jinna He, Pei Ding, Qianzhong Xue, and Erjun Liang  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25159-25166 (2013)
http://dx.doi.org/10.1364/OE.21.025159


View Full Text Article

Enhanced HTML    Acrobat PDF (1403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel planar plasmonic metamaterial for electromagnetically induced transparency and slow light characteristic is presented in this paper, which consists of nanoring and nanorod compound structures. Two bright modes in the metamaterial are induced by the electric dipole resonance inside nanoring and nanorod, respectively. The coupling between two bright modes introduces transparency window and large group index. By adjusting the geometric parameters of metamaterial structure, the transmittance of EIT window at 385 THz is about 60%, and the corresponding group index and Q factor can reach up to 1.2 × 103 and 97, respectively, which has an important application in slow-light device, active plasmonic switch, SERS and optical sensing.

© 2013 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: August 5, 2013
Revised Manuscript: September 30, 2013
Manuscript Accepted: October 1, 2013
Published: October 15, 2013

Citation
Junqiao Wang, Baohe Yuan, Chunzhen Fan, Jinna He, Pei Ding, Qianzhong Xue, and Erjun Liang, "A novel planar metamaterial design for electromagnetically induced transparency and slow light," Opt. Express 21, 25159-25166 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997). [CrossRef]
  2. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  3. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012). [CrossRef] [PubMed]
  4. V. Kravtsov, J. M. Atkin, and M. B. Raschke, “Group delay and dispersion in adiabatic plasmonic nanofocusing,” Opt. Lett.38(8), 1322–1324 (2013). [CrossRef] [PubMed]
  5. G. Wang, “Slow light engineering in periodic-stub-assisted plasmonic waveguide,” Appl. Opt.52(9), 1799–1804 (2013). [CrossRef] [PubMed]
  6. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19(7), 5970–5978 (2011). [CrossRef] [PubMed]
  7. H. Xu, H. Li, Z. Liu, G. Cao, C. Wu, and X. Peng, “Plasmonic EIT switching in ellipsoid tripod structures,” Opt. Mater.35(5), 881–886 (2013). [CrossRef]
  8. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  9. Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett.97(11), 114101 (2010). [CrossRef]
  10. J. Q. Wang, C. Z. Fan, J. N. He, P. Ding, E. J. Liang, and Q. Z. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express21(2), 2236–2244 (2013). [CrossRef] [PubMed]
  11. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  12. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  13. J. B. Khurgin and P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett.34(17), 2655–2657 (2009). [CrossRef] [PubMed]
  14. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B28(1), 28–36 (2011). [CrossRef]
  15. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express19(4), 3251–3257 (2011). [CrossRef] [PubMed]
  16. S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express19(16), 15363–15370 (2011). [CrossRef] [PubMed]
  17. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express1(3), 391–399 (2011). [CrossRef]
  18. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012). [CrossRef] [PubMed]
  19. S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13(2), 023034 (2011). [CrossRef]
  20. A. Pors, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Detuned electrical dipoles metamaterial with bianisotropic response,” Phys. Rev. B83(24), 245409 (2011). [CrossRef]
  21. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B80(3), 035104 (2009). [CrossRef]
  22. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011). [CrossRef]
  23. G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express20(19), 20902–20907 (2012). [CrossRef] [PubMed]
  24. G. Wang, H. Lu, and X. Liu, “Gain-assisted trapping of light in tapered plasmonic waveguide,” Opt. Lett.38(4), 558–560 (2013). [CrossRef] [PubMed]
  25. X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express19(22), 21652–21657 (2011). [CrossRef] [PubMed]
  26. Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express18(20), 20912–20917 (2010). [CrossRef] [PubMed]
  27. L. Dai, Y. Liu, and C. Jiang, “Plasmonic-dielectric compound grating with high group-index and transmission,” Opt. Express19(2), 1461–1469 (2011). [CrossRef] [PubMed]
  28. C. K. Chen, Y. C. Lai, Y. H. Yang, C. Y. Chen, and T. J. Yen, “Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials,” Opt. Express20(7), 6952–6960 (2012). [CrossRef] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited