OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25184–25196

Self-amplitude and self-phase modulation of the charcoal mode-locked erbium-doped fiber lasers

Yung-Hsiang Lin, Jui-Yung Lo, Wei-Hsuan Tseng, Chih-I Wu, and Gong-Ru Lin  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25184-25196 (2013)
http://dx.doi.org/10.1364/OE.21.025184


View Full Text Article

Enhanced HTML    Acrobat PDF (3233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the intra-cavity nano-scale charcoal powder based saturable absorber, the 455-fs passive mode-locking of an L-band erbium-doped fiber laser (EDFL) is demonstrated. The size reduction of charcoal nano-particle is implemented with a simple imprinting–exfoliation–wiping method, which assists to increase the transmittance up to 0.91 with corresponding modulation depth of 26%. By detuning the power gain from 17 to 21 dB and cavity dispersion from −0.004 to −0.156 ps2 of the EDFL, the shortening of mode-locked pulsewidth from picosecond to sub-picosecond by the transformation of the pulse forming mechanism from self-amplitude modulation (SAM) to the combining effect of self-phase modulation (SPM) and group delay dispersion (GDD) is observed. A narrower spectrum with 3-dB linewidth of 1.83-nm is in the SAM case, whereas the spectral linewidth broadens to 5.86 nm with significant Kelly sideband pair can be observed if the EDFL enters into the SPM regime. The mode-locking mechanism transferred from SAM to SPM/GDD dominates the pulse shortening procedure in the EDFL, whereas the intrinsic defects in charcoal nano-particle only affect the pulse formation at initial stage. The minor role of the saturable absorber played in the EDFL cavity with strongest SPM is observed.

© 2013 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.4236) Materials : Nanomaterials
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 26, 2013
Manuscript Accepted: May 28, 2013
Published: October 15, 2013

Citation
Yung-Hsiang Lin, Jui-Yung Lo, Wei-Hsuan Tseng, Chih-I Wu, and Gong-Ru Lin, "Self-amplitude and self-phase modulation of the charcoal mode-locked erbium-doped fiber lasers," Opt. Express 21, 25184-25196 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  2. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009). [CrossRef] [PubMed]
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  4. H. Zhang, D. Y. Tang, L. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010). [CrossRef]
  5. Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011). [CrossRef]
  6. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012). [CrossRef]
  7. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010). [CrossRef]
  8. H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010). [CrossRef]
  9. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010). [CrossRef]
  10. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18(22), 23054–23061 (2010). [CrossRef] [PubMed]
  11. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010). [CrossRef]
  12. B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99(26), 261109 (2011). [CrossRef]
  13. G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013). [CrossRef]
  14. Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010). [CrossRef]
  15. P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012). [CrossRef] [PubMed]
  16. J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett.37(11), 2166–2168 (2012). [CrossRef] [PubMed]
  17. G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012). [CrossRef]
  18. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009). [CrossRef]
  19. H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009). [CrossRef]
  20. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  21. Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010). [CrossRef]
  22. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010). [CrossRef]
  23. H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011). [CrossRef]
  24. J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012). [CrossRef] [PubMed]
  25. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20(17), 19463–19473 (2012). [CrossRef] [PubMed]
  26. J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20(21), 23653–23658 (2012). [CrossRef] [PubMed]
  27. Z. B. Liu, X. He, and D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36(16), 3024–3026 (2011). [CrossRef] [PubMed]
  28. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011). [CrossRef]
  29. Y. H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012). [CrossRef]
  30. Y. H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013). [CrossRef]
  31. V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012). [CrossRef]
  32. Y. H. Lin, Y. C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013). [CrossRef]
  33. K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009). [CrossRef] [PubMed]
  34. K. Nishimiya, T. Hata, Y. Imamura, and S. Ishihara, “Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy,” J. Wood Sci.44(1), 56–61 (1998). [CrossRef]
  35. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008). [CrossRef] [PubMed]
  36. X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010). [CrossRef] [PubMed]
  37. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006). [CrossRef] [PubMed]
  38. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008). [CrossRef] [PubMed]
  39. V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012). [CrossRef]
  40. Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, “X-ray diffraction patterns of graphite and turbostratic carbon,” Carbon45(8), 1686–1695 (2007). [CrossRef]
  41. E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B58(3), 159–170 (1994). [CrossRef]
  42. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000). [CrossRef]
  43. J.-C. Chiu, C.-M. Chang, B.-Z. Hsieh, S.-C. Lin, C.-Y. Yeh, G.-R. Lin, C.-K. Lee, J.-J. Lin, and W.-H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express19(5), 4036–4041 (2011). [CrossRef] [PubMed]
  44. Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett.31(10), 1382–1384 (2006). [CrossRef] [PubMed]
  45. G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol.25(11), 3597–3601 (2007). [CrossRef]
  46. G.-R. Lin, J. Y. Chang, Y. S. Liao, and H. H. Lu, “L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tunability,” Opt. Express14(21), 9743–9749 (2006). [CrossRef] [PubMed]
  47. G. P. Agrawal, Nonlinear Fiber Optics (London, UK: Academic Press, 1995).
  48. G.-R. Lin, I.-H. Chiu, and M. C. Wu, “1.2 ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60 ps backward dark-optical comb injection and soliton compression,” Opt. Express13(3), 1008–1014 (2005). [CrossRef] [PubMed]
  49. G.-R. Lin, J. J. Kang, and C. K. Lee, “High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection,” Opt. Express18(9), 9570–9579 (2010). [CrossRef] [PubMed]
  50. F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron.4(2), 159–168 (1998). [CrossRef]
  51. F. X. Kaertner, “Mode-locked Laser Theory,” physics.gatech.edu , (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited