OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25197–25209

10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance

Shih-Ying Lin, Yu-Chuan Su, Yi-Cheng Li, Hai-Lin Wang, Gong-Cheng Lin, Shian-Ming Chen, and Gong-Ru Lin  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 25197-25209 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2495 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 600-μm long-cavity laser diode with a front-facet reflectance of 2% is demonstrated as a colorless OC-192 transmitter for the future DWDM-PON, which is packed in a TO-56-can package of only 4-GHz frequency bandwidth but can be over-bandwidth modulated with 10-Gbit/s non-return-to-zero data-stream. The coherent injection-locking successfully suppresses its side-mode intensity and noise floor level, which further improves its modulation throughput at higher frequencies. With increasing the coherent injection-locking power from −12 to −3 dBm, the side-mode suppression ratio significantly increases from 39 to 50 dB, which also suppresses the frequency chirp from −12 to −4 GHz within a temporal range of 150 ps. The dense but weak longitudinal modes (with 0.6-nm spacing) in the long-cavity laser diode suppresses to one single-mode in a 100-GHz wide DWDM channel for carrying the OC-192 data at 9.953 Gbit/s. Such an over-bandwidth modulated laser diode still exhibits an on/off extinction ratio of 6.68 dB and a signal-to-noise ratio of 4.96 dB, which can provide a back-to-back receiving power sensitivity of −12.2 dBm at BER of 10−9. After 25-km DSF transmission of the OOK data-stream at a bit rate up to 10 Gbit/s, the receiving power sensitivity is −10.1 dBm at a requested BER of 10−9.

© 2013 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 13, 2013
Revised Manuscript: July 6, 2013
Manuscript Accepted: July 6, 2013
Published: October 15, 2013

Shih-Ying Lin, Yu-Chuan Su, Yi-Cheng Li, Hai-Lin Wang, Gong-Cheng Lin, Shian-Ming Chen, and Gong-Ru Lin, "10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance," Opt. Express 21, 25197-25209 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gutierrez, W.-T. Shaw, F.-T. An, Y.-L. Hsueh, M. Rogge, G. Wong, and L. G. Kazovsky, “Next Generation Optical Access Networks,” J. Lightwave Technol.25(11), 3428–3442 (2007). [CrossRef]
  2. K. Iwatsuki, J. Kani, H. Suzuki, and M. Fujiwara, “Access and metro networks based on WDM technologies,” J. Lightwave Technol.22(11), 2623–2630 (2004). [CrossRef]
  3. H.-C. Ji, I. Yamashita, and K.-I. Kitayama, “Cost-effective colorless WDM-PON delivering up/down-stream data and broadcast services on a single wavelength using mutually injected Fabry-Perot laser diodes,” Opt. Express16(7), 4520–4528 (2008). [CrossRef] [PubMed]
  4. T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,” IEEE Photon. Technol. Lett.18(22), 2350–2352 (2006). [CrossRef]
  5. C. H. Yeh, C. W. Chow, F. Y. Shih, C. H. Wang, Y. F. Wu, and S. Chi, “Wavelength-tunable laser for signal remodulation in WDM access networks using DPSK downlink and OOK uplink,” IEEE Photon. Technol. Lett.21(22), 1710–1712 (2009). [CrossRef]
  6. S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry–Perot lasers,” IEEE Photon. Technol. Lett.10(9), 1337–1339 (1998). [CrossRef]
  7. G.-R. Lin, Y.-C. Chang, and J.-R. Wu, “Rational harmonic mode-locking of erbium-doped fiber laser at 40 GHz using a loss-modulated Fabry-Pe´ rot laser diode,” IEEE Photon. Technol. Lett.16(8), 1810–1812 (2004). [CrossRef]
  8. S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Pérot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005). [CrossRef]
  9. K. Lee, S. B. Kang, D. S. Lim, H. K. Lee, and W. V. Sorin, “Fiber link loss monitoring scheme in bidirectional WDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett.18(3), 523–525 (2006). [CrossRef]
  10. G.-H. Peng, Y.-C. Chi, and G.-R. Lin, “DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring,” Opt. Express16(17), 13405–13413 (2008). [CrossRef] [PubMed]
  11. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in wdm-pon system,” J. Lightwave Technol.27(14), 2779–2785 (2009). [CrossRef]
  12. G.-R. Lin, Y.-H. Lin, C.-J. Lin, Y.-C. Chi, and G.-C. Lin, “Reusing a data-erased ASE carrier in a weak-resonant-cavity laser diode for noise-suppressed error-free transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011). [CrossRef]
  13. Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007). [CrossRef] [PubMed]
  14. Y.-C. Lin, G.-H. Peng, and G.-R. Lin, “Compression of 200 GHz DWDM channelized TDM pulsed carrier from optically modelocking WRC-FPLD fiber ring at 10 GHz,” Opt. Express17(7), 5526–5532 (2009). [CrossRef] [PubMed]
  15. G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010). [CrossRef]
  16. S. Kobayashi, J. Yamada, S. Machida, and T. Kimura, “Single mode operation of 500 Mbit/s modulated AlGaAs semiconductor laser,” Electron. Lett.16(19), 746–747 (1980). [CrossRef]
  17. S.-Y. Lin, Y.-C. Chi, Y.-C. Su, J.-W. Liao, H.-L. Wang, G.-C. Lin, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron.in press.
  18. C.-H. Yeh, C.-W. Chow, Y.-F. Wu, S.-P. Huang, Y.-L. Liu, and C.-L. Pan, “Performance of long-reach passive access networks using injection-locked fabry–perot laser diodes with finite front-facet reflectivities,” J. Lightwave Technol.31(12), 1929–1934 (2013). [CrossRef]
  19. H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Perot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. J.5(3), 7901208 (2013). [CrossRef]
  20. E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett.42(5), 299–301 (2006). [CrossRef]
  21. G.-R. Lin, T. K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express17(20), 17739–17746 (2009). [CrossRef] [PubMed]
  22. G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-xavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol.28(20), 2925–2932 (2010). [CrossRef]
  23. S. Mohrdiek, H. Burkhard, F. Steinhagen, H. Hillmer, R. Losch, W. Schlapp, and R. Gobel, “10-Gb/s standard fiber transmission using directly modulated 1.55-pm quantum-well DFB lasers,” IEEE Photon. Technol. Lett.7(11), 1357–1359 (1995). [CrossRef]
  24. Z. Al-Qazwini and H. Kim, “Symmetric 10-Gb/s WDM-PON using directly modulated lasers for downlink and RSOAs for uplink,” J. Lightwave Technol.30(12), 1891–1899 (2012). [CrossRef]
  25. M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in European Optical Communication Conf. (ECOC2008), 1–2, Sept. 2008. [CrossRef]
  26. M. C. Wu, C. Chang-Hasnain, E. K. Lau, and X. Zhao, “High-speed modulation of optical injection-locked semiconductor lasers,” in Proc. Optical Fiber Commun. Conf. (OFC)2008, San Diego, CA, Feb. 2008. [CrossRef]
  27. E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron.44(1), 90–99 (2008). [CrossRef]
  28. G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Technol.14(10), 2367–2373 (1996). [CrossRef]
  29. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008). [CrossRef] [PubMed]
  30. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett.7(7), 709–711 (1995). [CrossRef]
  31. P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, H. J. Thiele, J. H. Sinsky, S. Chandrasekhar, M. Winter, D. Castagnozzi, L. W. Stulz, and L. L. Buhl, “10-Gb/s upgrade of bidirectional CWDM systems using electronic equalization and FEC,” J. Lightwave Technol.23(1), 203–210 (2005). [CrossRef]
  32. I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement of low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett.20(23), 1983–1985 (2008). [CrossRef]
  33. S. Sivaprakasam and R. Singh, “Gain change and threshold reduction of diode laser by injection locking,” Opt. Commun.151(4-6), 253–256 (1998). [CrossRef]
  34. G.-R. Lin, Y.-C. Chi, Y.-S. Liao, H.-C. Kuo, Z.-W. Liao, H.-L. Wang, and G.-C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012). [CrossRef] [PubMed]
  35. J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett.8(1), 34–36 (1996). [CrossRef]
  36. X. Jin and S. L. Chuang, “Bandwidth enhancement of Fabry-Perot quantum-well lasers by injection-locking,” Solid-State Electron.50(6), 1141–1149 (2006). [CrossRef]
  37. L. Li, “Static and dynamic properties of injection-locked semiconductor lasers,” IEEE J. Quantum Electron.30(8), 1701–1708 (1994). [CrossRef]
  38. C.-C. Lin, Y.-C. Chi, H.-C. Kuo, P.-C. Peng, C. J. Chang-Hasnain, and G.-R. Lin, “Beyond-bandwidth electrical pulse modulation of a TO-Can packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission,” J. Lightwave Technol.29(6), 830–841 (2011). [CrossRef]
  39. K.-Y. Park, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “A theoretical model of a wavelength-locked Fabry–Pérot laser diode to the externally injected narrow-band ASE,” IEEE Photon. Technol. Lett.17(9), 1797–1799 (2005). [CrossRef]
  40. S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/S by strong CW light injection,” J. Lightwave Technol.12(3), 418–424 (1994). [CrossRef]
  41. G.-R. Lin, H.-L. Wang, T.-K. Cheng, and G.-C. Lin, “Suppressing chirp and power penalty of channelized ASE injection-locked mode-number tunable weak-resonant-cavity FPLD transmitter,” IEEE J. Quantum Electron.45(9), 1106–1113 (2009). [CrossRef]
  42. Y.-H. Lin, C.-J. Lin, G.-C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express19(5), 4067–4075 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited