OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25333–25343

Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions

Y. Jin, O. J. Allegre, W. Perrie, K. Abrams, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25333-25343 (2013)
http://dx.doi.org/10.1364/OE.21.025333


View Full Text Article

Acrobat PDF (3605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The polarization state of an ultrafast laser is dynamically controlled using two Spatial Light Modulators and additional waveplates. Consequently, four states of polarization, linear horizontal and vertical, radial and azimuthal, all with a ring intensity distribution, were dynamically switched at a frequency ν = 12.5Hz while synchronized with a motion control system. This technique, demonstrated here for the first time, enables a remarkable level of real-time control of the properties of light waves and applied to real-time surface patterning, shows that highly controlled nanostructuring is possible. Laser ablation of Induced Periodic Surface Structures is used to directly verify the state of polarization at the focal plane.

© 2013 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization
(080.4865) Geometric optics : Optical vortices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 26, 2013
Revised Manuscript: October 2, 2013
Manuscript Accepted: October 4, 2013
Published: October 16, 2013

Citation
Y. Jin, O. J. Allegre, W. Perrie, K. Abrams, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, "Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions," Opt. Express 21, 25333-25343 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25333


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart and Winston, Inc., New York, 1975), Chap. 2.
  2. H. Kleinpoppen, Constituents of Matter, Atoms, Molecules, Nuclei and Particles, p142, Ed. Bergmann/Schaefer, Copyright Walter de Gruyer, Berlin, New York (1997), Berlin, Germany.
  3. J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012). [CrossRef]
  4. R. W. Boyd, Nonlinear Optics (Academic press, Burlington MA, Elsevier, 2008), Chap. 4.
  5. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett.20(1), 73–75 (1995). [CrossRef] [PubMed]
  6. N. A. Panov, V. A. Makarov, V. Y. Fedorov, and O. G. Kosareva, “Filamentation of arbitrary polarized femtosecond laser pulses in case of high-order Kerr effect,” Opt. Lett.38(4), 537–539 (2013). [CrossRef] [PubMed]
  7. L. Ye, Laser Group, School of Engineering, University of Liverpool, L69 3GQ, UK, W. Perrie, O. Allegre, Y. Jin, Z. Kuang, P. Scully, E. Fearon, D. Eckford, S. Edwardson, and G. Dearden are preparing a manuscript to be called “NUV femtosecond laser inscription of volume Bragg gratings in poly (methyl) methacrylate with linear and circular polarizations”.
  8. R. A. Fox, R. M. Kogan, and E. J. Robinson, “Laser Triple-Quantum Photoionization of Cesium,” Phys. Rev. Lett.26(23), 1416–1417 (1971). [CrossRef]
  9. R. M. Kogan, R. A. Fox, G. T. Burnham, and E. J. Robinson, “Two-photon ionization of cesium,” Bull. Am. Phys. Soc.16, 1411 (1971).
  10. H. S. Carman and R. N. Compton, “High-order multiphoton ionization photoelectron spectroscopy of nitric oxide,” J. Chem. Phys.90(3), 1307 (1989). [CrossRef]
  11. D. D. Venable and R. B. Kay, “Polarization effects in four-photon conductivity in quartz,” Appl. Phys. Lett.27(1), 48–49 (1975). [CrossRef]
  12. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett.97(23), 237403 (2006). [CrossRef] [PubMed]
  13. H. R. Reiss, “Polarization Effects in High-Order Multiphoton Ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972). [CrossRef]
  14. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill Writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007). [CrossRef]
  15. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  16. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B26(10), 5366–5381 (1982). [CrossRef]
  17. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett.32(13), 1932–1934 (2007). [CrossRef] [PubMed]
  18. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106(12), 123901 (2011). [CrossRef] [PubMed]
  19. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. Von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999). [CrossRef]
  20. C. Föhl, D. Breitling, and F. Dausinger, “Precise drilling of steel with ultrashort plused solid-state lasers,” Proc. SPIE5121, 271–279 (2003). [CrossRef]
  21. S. Hahne, B. F. Johnston, and M. J. Withford, “Pulse-to-pulse polarization-switching method for high-repetition-rate lasers,” Appl. Opt.46(6), 954–958 (2007). [CrossRef] [PubMed]
  22. O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process.107(2), 445–454 (2012). [CrossRef]
  23. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011). [CrossRef]
  24. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express14(7), 2650–2656 (2006). [CrossRef] [PubMed]
  25. O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express21(18), 21198–21207 (2013). [CrossRef]
  26. S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser processing by use of a spatial light modulator,” Proc. SPIE6458, 645815 (2007). [CrossRef]
  27. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16(8), 5481–5492 (2008). [CrossRef] [PubMed]
  28. S. Hasegawa and Y. Hayasaki, “Polarization distribution control of parallel femtosecond pulses with spatial light modulators,” Opt. Express21(11), 12987–12995 (2013). [CrossRef] [PubMed]
  29. J. Zhang, M. Gecevicius, M. Beresna, and P. G. Kazansky, “5D Data Storage by Ultrafast Laser Nanostructuring in Glass”, in Conference on Lasers and Electro-Optics, Technical Digest (online) (Optical Society of America, 2013), paper CTh5D. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_SI-2013-CTh5D.9
  30. P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast laser micro-machining of common metals in air,” Proc. SPIE4876, 470–478 (2003). [CrossRef]
  31. U. Klug, J. F. Dusing, T. Sato, K. Washio, and R. Kling, “Polarization converted laser beams for micromachining applications,” Proc. SPIE7590, 759006, 759006-8 (2010). [CrossRef]
  32. K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express20(1), 120–127 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited