OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25346–25355

Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning

Visar Ajeti, Chi-Hsiang Lien, Shean-Jen Chen, Ping-Jung Su, Jayne M. Squirrell, Katharine H. Molinarolo, Gary E. Lyons, Kevin W. Eliceiri, Brenda M. Ogle, and Paul J. Campagnola  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25346-25355 (2013)
http://dx.doi.org/10.1364/OE.21.025346


View Full Text Article

Enhanced HTML    Acrobat PDF (2251 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiphoton excited photochemistry is a powerful 3D fabrication tool that produces sub-micron feature sizes. Here we exploit the freeform nature of the process to create models of the extracellular matrix (ECM) of several tissues, where the design blueprint is derived directly from high resolution optical microscopy images (e.g. fluorescence and Second Harmonic Generation). To achieve this goal, we implemented a new form of instrument control, termed modulated raster scanning, where rapid laser shuttering (10 MHz) is used to directly map the greyscale image data to the resulting protein concentration in the fabricated scaffold. Fidelity in terms of area coverage and relative concentration relative to the image data is ~95%. We compare the results to an STL approach, and find the new scheme provides significantly improved performance. We suggest the method will enable a variety of cell-matrix studies in cancer biology and also provide insight into generating scaffolds for tissue engineering.

© 2013 Optical Society of America

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3450) Other areas of optics : Laser-induced chemistry

ToC Category:
Laser Microfabrication

History
Original Manuscript: July 29, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: September 22, 2013
Published: October 17, 2013

Citation
Visar Ajeti, Chi-Hsiang Lien, Shean-Jen Chen, Ping-Jung Su, Jayne M. Squirrell, Katharine H. Molinarolo, Gary E. Lyons, Kevin W. Eliceiri, Brenda M. Ogle, and Paul J. Campagnola, "Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning," Opt. Express 21, 25346-25355 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25346


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. E. Burgeson, “Basement Membranes,” in Dermatology in General Medicine, T. B. Fitzpatrick, A. Z. Eisen, K. Wolff, I. M. Freedberg, and K. F. Austen, eds. (McGraw-Hill, 1987), pp. 288–303.
  2. N. J. Sniadecki, R. A. Desai, S. A. Ruiz, and C. S. Chen, “Nanotechnology for cell-substrate interactions,” Ann. Biomed. Eng.34(1), 59–74 (2006). [CrossRef] [PubMed]
  3. S. Wang, C. Wong Po Foo, A. Warrier, M. M. Poo, S. C. Heilshorn, and X. Zhang, “Gradient lithography of engineered proteins to fabricate 2D and 3D cell culture microenvironments,” Biomed. Microdevices11(5), 1127–1134 (2009). [CrossRef] [PubMed]
  4. X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides, “Directing cell migration with asymmetric micropatterns,” Proc. Natl. Acad. Sci. U.S.A.102(4), 975–978 (2005). [CrossRef] [PubMed]
  5. J. L. Charest, L. E. Bryant, A. J. Garcia, and W. P. King, “Hot embossing for micropatterned cell substrates,” Biomaterials25(19), 4767–4775 (2004). [CrossRef] [PubMed]
  6. T. R. Cox and J. T. Erler, “Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer,” Dis. Model. Mech.4(2), 165–178 (2011). [CrossRef] [PubMed]
  7. P. Lu, V. M. Weaver, and Z. Werb, “The extracellular matrix: a dynamic niche in cancer progression,” J. Cell Biol.196(4), 395–406 (2012). [CrossRef] [PubMed]
  8. P. Friedl and S. Alexander, “Cancer invasion and the microenvironment: plasticity and reciprocity,” Cell147(5), 992–1009 (2011). [CrossRef] [PubMed]
  9. L. A. Liotta and W. G. Stetler-Stevenson, “Tumor invasion and metastasis: an imbalance of positive and negative regulation,” Cancer Res.51(18Suppl), 5054s–5059s (1991). [PubMed]
  10. J. A. Santiago, R. Pogemiller, and B. M. Ogle, “Heterogeneous differentiation of human mesenchymal stem cells in response to extended culture in extracellular matrices,” Tissue Eng. Part A15(12), 3911–3922 (2009). [CrossRef] [PubMed]
  11. D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc.5(3), 491–502 (2010). [CrossRef] [PubMed]
  12. J. J. Rice, M. M. Martino, L. De Laporte, F. Tortelli, P. S. Briquez, and J. A. Hubbell, “Engineering the regenerative microenvironment with biomaterials,” Adv Healthc Mater2(1), 57–71 (2013). [CrossRef] [PubMed]
  13. C. A. DeForest and K. S. Anseth, “Advances in bioactive hydrogels to probe and direct cell fate,” Annu Rev Chem Biomol Eng3(1), 421–444 (2012). [CrossRef] [PubMed]
  14. J. J. Moon, J. E. Saik, R. A. Poché, J. E. Leslie-Barbick, S. H. Lee, A. A. Smith, M. E. Dickinson, and J. L. West, “Biomimetic hydrogels with pro-angiogenic properties,” Biomaterials31(14), 3840–3847 (2010). [CrossRef] [PubMed]
  15. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release,” Macromolecules33, 1514–1523 (2000). [CrossRef]
  16. M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, “Construction of a laser scanning microscope for multiphoton excited optical fabrication,” Rev. Sci. Instrum.74(7), 3474–3477 (2003). [CrossRef]
  17. L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express14(19), 8613–8621 (2006). [CrossRef] [PubMed]
  18. S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multiphoton Excited Fabrication of Collagen Matrixes Cross-linked by a Modified Benzophenone Dimer: Bioactivity and Enzymatic Degradation,” Biomacromolecules6(3), 1465–1474 (2005). [CrossRef] [PubMed]
  19. J. D. Pitts, A. R. Howell, R. Taboada, I. Banerjee, J. Wang, S. L. Goodman, and P. J. Campagnola, “New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: bovine serum albumin and type 1 collagen,” Photochem. Photobiol.76(2), 135–144 (2002). [CrossRef] [PubMed]
  20. X. Chen, M. A. Brewer, C. Zou, and P. J. Campagnola, “Adhesion and migration of ovarian cancer cells on crosslinked laminin fibers nanofabricated by multiphoton excited photochemistry,” Integr Biol (Camb)1(7), 469–476 (2009). [CrossRef] [PubMed]
  21. X. Chen, Y. D. Su, V. Ajeti, S. J. Chen, and P. J. Campagnola, “Cell adhesion on micro-structured fibronectin gradients fabricated by multiphoton excited photochemistry,” Cell Mol Bioeng5(3), 307–319 (2012). [CrossRef] [PubMed]
  22. P. J. Su, Q. A. Tran, J. J. Fong, K. W. Eliceiri, B. M. Ogle, and P. J. Campagnola, “Mesenchymal Stem Cell Interactions with 3D ECM Modules Fabricated via Multiphoton Excited Photochemistry,” Biomacromolecules13(9), 2917–2925 (2012). [CrossRef] [PubMed]
  23. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photon Rev2(1-2), 100–111 (2008). [CrossRef]
  24. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An Efficient Two-Photon-Generated Photoacid Applied to Positive-Tone 3D Microfabrication,” Science296(5570), 1106–1109 (2002). [CrossRef] [PubMed]
  25. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Active Aberration Correction for the Writing of Three-Dimensional Optical Memory Devices,” Appl. Opt.41(7), 1374–1379 (2002). [CrossRef] [PubMed]
  26. C. E. Olson, M. J. Previte, and J. T. Fourkas, “Efficient and robust multiphoton data storage in molecular glasses and highly crosslinked polymers,” Nat. Mater.1(4), 225–228 (2002). [CrossRef] [PubMed]
  27. J. Fourkas, “Multiphoton lithography, processing and fabrication of photonic structures,” Woodh Pub Ser Elect, 139–161 (2012).
  28. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  29. G. Kumi, C. O. Yanez, K. D. Belfield, and J. T. Fourkas, “High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios,” Lab Chip10(8), 1057–1060 (2010). [CrossRef] [PubMed]
  30. C. A. DeForest, B. D. Polizzotti, and K. S. Anseth, “Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments,” Nat. Mater.8(8), 659–664 (2009). [CrossRef] [PubMed]
  31. R. G. Wylie, S. Ahsan, Y. Aizawa, K. L. Maxwell, C. M. Morshead, and M. S. Shoichet, “Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels,” Nat. Mater.10(10), 799–806 (2011). [CrossRef] [PubMed]
  32. B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, “Guiding neuronal development with in situ microfabrication,” Proc. Natl. Acad. Sci. U.S.A.101(46), 16104–16108 (2004). [CrossRef] [PubMed]
  33. D. F. Eaton, “Dye sensitized photopolymerization,” Adv Photochem13, 427–487 (1986). [CrossRef]
  34. D. Balasubramanian, X. Du, and J. S. J. Zigler., “The reaction of singlet oxygen with proteins, with special reference to crystallins,” Photochem. Photobiol.52(4), 761–768 (1990). [CrossRef] [PubMed]
  35. S. Basu and P. J. Campagnola, “Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation,” J. Biomed. Mater. Res. A71(2), 359–368 (2004). [CrossRef] [PubMed]
  36. S. Basu, C. W. Wolgemuth, and P. J. Campagnola, “Measurement of Normal and Anomalous Diffusion of Dyes within Protein Structures Fabricated via Multiphoton Excited Cross-linking,” Biomacromolecules5(6), 2347–2357 (2004). [CrossRef] [PubMed]
  37. C. Lorenz, I. C. Carlsen, T. M. Buzug, C. Fassnacht, and J. Weese, “A multi-scale line filter with automatic scale selection based on the Hessian matrix for medical image segmentation,” Lect. Notes Comput. Sci.1252, 152–163 (1997). [CrossRef]
  38. H. B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci.170, 169–273 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited