OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25403–25417

Numerical characterization of an ultra-high NA coherent fiber bundle part II: point spread function analysis

Stefaan Heyvaert, Heidi Ottevaere, Ireneusz Kujawa, Ryszard Buczynski, and Hugo Thienpont  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25403-25417 (2013)
http://dx.doi.org/10.1364/OE.21.025403


View Full Text Article

Enhanced HTML    Acrobat PDF (1974 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Straightforward numerical integration of the Rayleigh-Sommerfeld diffraction integral (R-SDI) remains computationally challenging, even with today’s computational resources. As such, approximating the R-SDI to decrease the computation time while maintaining a good accuracy is still a topic of interest. In this paper, we apply an approximation for the R-SDI that is to be used to propagate the field exiting a Coherent Fiber Bundle (CFB) with ultra-high numerical aperture (0.928) of which we presented the design and modal properties in previous work. Since our CFB has single-mode cores with a diameter (550nm) smaller than the wavelength (850nm) for which the CFB was designed, we approximate the highly divergent fundamental modes of the cores with real Dirac delta functions. We find that with this approximation we can strongly reduce the computation time of the R-SDI while maintaining a good agreement with the results of the full R-SDI. Using this approximation, we first determine the Point Spread Function (PSF) for an ‘ideal’ output field exiting the CFB (identical amplitudes for cores on a perfect hexagonal lattice with the phase of each core determined by the appropriate spherical and tilted plane wave front). Next, we analyze the PSF when amplitude or phase noise is superposed onto this ‘ideal’ field. We find that even in the presence of these types of noise, the effect on the central peak of PSF is limited. From these types of noise, phase noise is found to have the biggest impact on the PSF.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(060.2400) Fiber optics and optical communications : Fiber properties
(170.2150) Medical optics and biotechnology : Endoscopic imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 10, 2013
Revised Manuscript: September 10, 2013
Manuscript Accepted: October 7, 2013
Published: October 17, 2013

Citation
Stefaan Heyvaert, Heidi Ottevaere, Ireneusz Kujawa, Ryszard Buczynski, and Hugo Thienpont, "Numerical characterization of an ultra-high NA coherent fiber bundle part II: point spread function analysis," Opt. Express 21, 25403-25417 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25403


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010). [CrossRef] [PubMed]
  2. J. U. Kang, J.-H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J Opt Soc Korea14(1), 1–13 (2010). [CrossRef] [PubMed]
  3. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett.30(14), 1803–1805 (2005). [CrossRef] [PubMed]
  4. W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng. 48(10), 103001 (2009).
  5. H. D. Ford and R. P. Tam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol.18(9), 2949–2957 (2007). [CrossRef]
  6. L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett.102(16), 161113 (2013). [CrossRef]
  7. S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J Biophotonics4(7-8), 471–481 (2011). [CrossRef] [PubMed]
  8. H. C. Park, C. Song, M. Kang, Y. Jeong, and K. H. Jeong, “Forward imaging OCT endoscopic catheter based on MEMS lens scanning,” Opt. Lett.37(13), 2673–2675 (2012). [CrossRef] [PubMed]
  9. P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett.25(24), 1780–1782 (2000). [CrossRef] [PubMed]
  10. J.-H. Han, J. Lee, and J. U. Kang, “Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging,” Opt. Express18(7), 7427–7439 (2010). [CrossRef] [PubMed]
  11. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat Commun3, 1027 (2012). [CrossRef] [PubMed]
  12. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express19(1), 247–254 (2011). [CrossRef] [PubMed]
  13. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett.36(9), 1707–1709 (2011). [CrossRef] [PubMed]
  14. M. Kyrish, R. Kester, R. Richards-Kortum, and T. Tkaczyk, “Improving spatial resolution of a fiber bundle optical biopsy,” Proc. SPIE 7558, Endoscopic MicroscopyV, 755807, 755807-9 (2010). [CrossRef]
  15. S. Heyvaert, C. Debaes, H. Ottevaere, and H. Thienpont, “Design of a novel multicore optical fibre for imaging and beam delivery in endoscopy,” Proc. SPIE 8429, Optical Modelling and DesignII, 84290Q, 84290Q-13 (2012). [CrossRef]
  16. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B93(2–3), 531–538 (2008). [CrossRef]
  17. Schott website: http://www.schott.com/advanced_optics/english/abbe_datasheets/schott_datasheet_sf6.pdf?highlighted_text=SF6
  18. S. Heyvaert, H. Ottevaere, I. Kujawa, R. Buczynski, M. Raes, H. Terryn, and H. Thienpont, “Numerical characterization of an ultra-high NA coherent fiber bundle part I: modal analysis,” Opt. Express21(19), 21991–22011 (2013). [CrossRef] [PubMed]
  19. A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets,” Opt. Express18(26), 27036–27047 (2010). [CrossRef] [PubMed]
  20. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A11(4), 1365–1370 (1975). [CrossRef]
  21. G. P. Agrawal and D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am.69(4), 575–578 (1979). [CrossRef]
  22. M. Couture and P. A. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A24(1), 355–359 (1981). [CrossRef]
  23. L. B. Felsen, “Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams,” Geophys. J. Int.79(1), 77–88 (1984). [CrossRef]
  24. P.-A. Bellanger and M. Couture, “Boundary diffraction of an inhomogeneous wave,” J. Opt. Soc. Am.73(4), 446–450 (1983). [CrossRef]
  25. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56(5), 703–718 (1977). [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), Chap. 3.
  27. T. Cizmar and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010). [CrossRef]
  28. M. J. Gander, D. Macrae, E. A. C. Galliot, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, and M. N. Inci, “Two-axis bend measurement using multicore optical fibre,” Opt. Commun.182(1–3), 115–121 (2000). [CrossRef]
  29. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express20(3), 2967–2973 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited