OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25492–25500

Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser

Osung Kwon, Kwang-Kyoon Park, Young-Sik Ra, Yong-Su Kim, and Yoon-Ho Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 25492-25500 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

© 2013 OSA

OCIS Codes
(270.5570) Quantum optics : Quantum detectors
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: September 4, 2013
Revised Manuscript: October 6, 2013
Manuscript Accepted: October 9, 2013
Published: October 17, 2013

Osung Kwon, Kwang-Kyoon Park, Young-Sik Ra, Yong-Su Kim, and Yoon-Ho Kim, "Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser," Opt. Express 21, 25492-25500 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,” Phil. Trans. R. Soc. Lond. A361, 1655–1674 (2003). [CrossRef]
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
  5. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997). [CrossRef]
  6. Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett.86, 1370–1373 (2001). [CrossRef] [PubMed]
  7. V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics5, 222–229 (2011). [CrossRef]
  8. O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Observing photonic de Broglie waves without the maximally-path-entangled |N, 0〉 + |0, N〉 state,” Phys. Rev. A81, 063801 (2010). [CrossRef]
  9. Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nature Commun.4, 2451 (2013). [CrossRef]
  10. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett.61, 2921–2924 (1988). [CrossRef] [PubMed]
  11. Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett.61, 50–53 (1988). [CrossRef] [PubMed]
  12. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  13. H.-T. Lim, Y.-S. Kim, Y.-S. Ra, J. Bae, and Y.-H. Kim, “Experimental realization of an approximate partial transpose for photonic two-qubit systems,” Phys. Rev. Lett.107, 160401 (2011). [CrossRef] [PubMed]
  14. Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Phys.8, 117–120 (2012). [CrossRef]
  15. R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A66, 062304 (2002). [CrossRef]
  16. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17, 11440–11449 (2009). [CrossRef] [PubMed]
  17. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62, 2205–2208 (1989). [CrossRef] [PubMed]
  18. J. Brendel, E. Mohler, and W. Martienssen, “Time-resolved dual-beam two-photon interferences with high visibility,” Phys. Rev. Lett.66, 1142–1145 (1991). [CrossRef] [PubMed]
  19. J. G. Rarity and P. R. Tapster, “Fourth-order interference effects at large distances,” Phys. Rev. A45, 2052–2056 (1992). [CrossRef] [PubMed]
  20. Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Einstein-Podolsky-Rosen state for space-time variables in a two-photon interference experiment,” Phys. Rev. A47, 1288–1293 (1993). [CrossRef] [PubMed]
  21. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A47, R2472–R2475 (1993). [CrossRef] [PubMed]
  22. D. V. Strekalov, T. B. Pittman, A. V. Sergienko, Y. H. Shih, and P. G. Kwiat, “Postselection-free energy-time entanglement,” Phys. Rev. A54, R1–R4 (1996). [CrossRef] [PubMed]
  23. T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5-μ m band with periodically poled lithium niobate waveguide,” Opt. Express15, 1679–1683 (2007). [CrossRef] [PubMed]
  24. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett.82, 2594–2597 (1999). [CrossRef]
  25. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett.84, 4737–4740 (2000). [CrossRef] [PubMed]
  26. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002). [CrossRef]
  27. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett.81, 3563–3566 (1998). [CrossRef]
  28. A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, and S. P. Kulik, “Biphoton interference with a multimode pump,” Phys. Rev. A63, 053801 (2001). [CrossRef]
  29. S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode lase using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys.46, 7720–7723 (2007). [CrossRef]
  30. O. Kwon, Y.-S. Ra, and Y.-H. Kim, “Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser,” Opt. Express17, 13059–13069 (2009). [CrossRef] [PubMed]
  31. J. F. Clauser and M. A. Horne, “Experimental consequences of objective local theories,” Phys. Rev. D10, 526–535 (1974). [CrossRef]
  32. J. Galinis, M. Karpiński, G. Tamošauskas, K. Dobek, and A. Piskarskas, “Photon coincidences in spontaneous parametric down-converted radiation excited by a blue LED in bulk LiIO3 crystal,” Opt. Express19, 10351–10358 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited