OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25509–25516

Generation and confinement of microwave gas-plasma in photonic dielectric microstructure

B. Debord, R. Jamier, F. Gérôme, O. Leroy, C. Boisse-Laporte, P. Leprince, L. L. Alves, and F. Benabid  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 25509-25516 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1912 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a self-guided microwave surface-wave induced generation of ~60 μm diameter and 6 cm-long column of argon-plasma confined in the core of a hollow-core photonic crystal fiber. At gas pressure of 1 mbar, the micro-confined plasma exhibits a stable transverse profile with a maximum gas-temperature as high as 1300 ± 200 K, and a wall-temperature as low as 500 K, and an electron density level of 1014 cm−3. The fiber guided fluorescence emission presents strong Ar+ spectral lines in the visible and near UV. Theory shows that the observed combination of relatively low wall-temperature and high ionisation rate in this strongly confined configuration is due to an unprecedentedly wide electrostatic space-charge field and the subsequent ion acceleration dominance in the plasma-to-gas power transfer.

© 2013 OSA

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(350.5400) Other areas of optics : Plasmas
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 24, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 14, 2013
Published: October 18, 2013

B. Debord, R. Jamier, F. Gérôme, O. Leroy, C. Boisse-Laporte, P. Leprince, L. L. Alves, and F. Benabid, "Generation and confinement of microwave gas-plasma in photonic dielectric microstructure," Opt. Express 21, 25509-25516 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun.102(2-3), 165–173 (1997). [CrossRef]
  2. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  3. F. Benabid, “Hollow-core photonic bandgap fibres: new guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A364, 3439–3462 (2006).
  4. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996). [CrossRef]
  5. H. Bergmann, U. Stamm, D. Basting, and G. Marowsky, “Principles of Excimer Lasers,” in Excimer Laser Technology (Springer Berlin Heidelberg, 2005).
  6. J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994). [CrossRef] [PubMed]
  7. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009).
  8. F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011). [CrossRef]
  9. X. Shi, X. B. Wang, W. Jin, and M. S. Demokan, “Characteristics of Gas Breakdown in Hollow-Core Fibers,” IEEE Photonics Technol. Lett.20(8), 650–652 (2008). [CrossRef]
  10. L. Ji, D. Liu, Y. Song, and J. Niu, “Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers,” J. Appl. Phys.111(7), 073304 (2012). [CrossRef]
  11. Y. P. Raizer, “Gas Discharge Physics,” (Springer, New York, 1991).
  12. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002). [CrossRef] [PubMed]
  13. M. Moisan, C. Beaudry, and P. Leprince, “A Small Microwave Plasma Source for Long Column Production without Magnetic Field,” IEEE Trans. Plasma Sci.3(2), 55–59 (1975). [CrossRef]
  14. M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982). [CrossRef]
  15. M. A. Lieberman, “Dynamics of a collisional, capacitive RF sheath,” IEEE Trans. Plasma Sci.17(2), 338–341 (1989). [CrossRef]
  16. H. Schluter and A. Shivarova, “Travelling-wave-sustained discharges,” Phys. Rep.443(4-6), 121–255 (2007). [CrossRef]
  17. Z. Zakrzewski, “Conditions of existence and axial structure of long microwave discharges sustained by travelling waves,” J. Phys. D Appl. Phys.16(2), 171–180 (1983). [CrossRef]
  18. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007). [CrossRef] [PubMed]
  19. C. M. Ferreira, “Modelling of a low-pressure plasma column sustained by a surface wave,” J. Phys. D Appl. Phys.16(9), 1673–1685 (1983). [CrossRef]
  20. L. L. Alves, “Fluid modelling of the positive column of direct-current glow discharges,” Plasma Sources Sci. Technol.16(3), 557–569 (2007). [CrossRef]
  21. M. Lieberman and A. J. Lichtenberg, “Principles of plasma discharges and materials processing,” (John Wiley, New Jersey, 2005).
  22. H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003). [CrossRef]
  23. C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince, and J. Marec, “Influence of the excitation frequency on surface wave argon discharges: Study of the light emission,” J. Appl. Phys.61(5), 1740–1746 (1987). [CrossRef]
  24. Z. Rakem, P. Leprince, and J. Marec, “Characteristics of a surface-wave produced discharge operating under standing wave conditions,” Rev. Phys. Appl. (Paris)25(1), 125–130 (1990). [CrossRef]
  25. C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003). [CrossRef]
  26. L. L. Alves, S. Letout, and C. Boisse-Laporte, “Modeling of surface-wave discharges with cylindrical symmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016403 (2009). [CrossRef] [PubMed]
  27. J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, “Self-consistent modelling of atmospheric micro-plasmas produced by a microwave source,” Plasma Sources Sci. Technol.21(1), 015013 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MPG (7031 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited