OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25526–25531

85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states

M. Butkus, E. A. Viktorov, T. Erneux, C. J. Hamilton, G. Maker, G. P. A. Malcolm, and E. U. Rafailov  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25526-25531 (2013)
http://dx.doi.org/10.1364/OE.21.025526


View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mode-locked optically pumped semiconductor disk lasers (SDLs) are in strong demand for applications in bio-medical photonics, chemistry, space communications and non-linear optics. However, the wider spread of SDLs was constrained as they are operated in high repetition rates above 200 MHz due to short carrier lifetimes in the semiconductors. Here we demonstrate experimentally and theoretically that it is possible to overcome the limitation of fast carrier relaxation and show significant reduction of repetition rate down to 85.7 MHz by exploiting phase-amplitude coupling effect. In addition, a low repetition rate SDL serves as a test-bed for bound soliton state previously unknown for semiconductor devices. The breakthrough to sub-100 MHz repetition rate will open a whole new window of development opportunities.

© 2013 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 29, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 17, 2013
Published: October 18, 2013

Citation
M. Butkus, E. A. Viktorov, T. Erneux, C. J. Hamilton, G. Maker, G. P. A. Malcolm, and E. U. Rafailov, "85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states," Opt. Express 21, 25526-25531 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25526


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009). [CrossRef]
  2. M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1W of average output power,” Electron. Lett.48(10), 588–589 (2012). [CrossRef]
  3. E. J. Saarinen, A. Rantamaki, A. Chamorovskiy, and O. G. Okhotnikov, “200 GHz 1 W semiconductor disc laser emitting 800 fs pulses,” Electron. Lett.48(21), 1355–1356 (2012). [CrossRef]
  4. Lukaz Kornaszewski, Nils Hempler, Craig J. Hamilton, Gareth T. Maker, and G. P. A. Malcolm, “Advances in mode-locked semiconductor disk lasers,” Proc. SPIE 8606, San Francisco, USA(2013).
  5. L. Kornaszewski, G. Maker, G. P. A. Malcolm, M. Butkus, E. U. Rafailov, and C. J. Hamilton, “SESAM-free mode-locked semiconductor disk laser,” Laser Photon. Rev.6(6), L20–L23 (2012). [CrossRef]
  6. K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Repetition-frequency-tunable mode-locked surface emitting semiconductor laser between 2.78 and 7.87 GHz,” Opt. Express19(23), 23453–23459 (2011). [CrossRef] [PubMed]
  7. Y. C. Chen, P. Wang, J. J. Coleman, D. P. Bour, K. K. Lee, and R. G. Waters, “Carrier recombination rates in strained-layer InGaAs-GaAsquantum-wells,” IEEE J. Quantum Electron.27(6), 1451–1455 (1991). [CrossRef]
  8. J. E. Ehrlich, D. T. Neilson, A. C. Walker, G. T. Kennedy, R. S. Grant, W. Sibbett, and M. Hopkinson, “Carrier lifetimes in MBE and MOCVD InGaAs quantum-wells,” Semicond. Sci. Technol.8(2), 307–309 (1993). [CrossRef]
  9. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys.7, 217 (2005). [CrossRef]
  10. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011). [CrossRef] [PubMed]
  11. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21(2), 1599–1605 (2013). [CrossRef] [PubMed]
  12. E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett.16(11), 2439–2441 (2004). [CrossRef]
  13. D. J. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “Growth parameter optimization for fast quantum dot SESAMs,” Opt. Express16(23), 18646–18656 (2008). [CrossRef] [PubMed]
  14. A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron.34(1), 1–45 (2010). [CrossRef]
  15. K. G. Wilcox, M. Butkus, I. Farrer, D. A. Ritchie, A. Tropper, and E. U. Rafailov, “Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser,” Appl. Phys. Lett.94(25), 251105 (2009). [CrossRef]
  16. T. Piwonski, J. Pulka, E. A. Viktorov, G. Huyet, and J. Houlihan, “Refractive index dynamics of quantum dot based waveguide electroabsorbers,” Appl. Phys. Lett.97(5), 051107 (2010). [CrossRef]
  17. E. J. Saarinen, A. Härkönen, R. Herda, S. Suomalainen, L. Orsila, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Harmonically mode-locked VECSELs for multi-GHz pulse train generation,” Opt. Express15(3), 955–964 (2007). [CrossRef] [PubMed]
  18. R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B.75(4-5), 445–451 (2002). [CrossRef]
  19. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A44(10), 6954–6957 (1991). [CrossRef] [PubMed]
  20. V. V. Afanasjev, B. A. Malomed, and P. L. Chu, “Stability of bound states of pulses in the Ginzburg-Landau equations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 6020–6025 (1997). [CrossRef]
  21. Y. Gong, P. Shum, T. Hiang, Q. Cheng, Q. Wen, and D. Tang, “Bound soliton pulses in passively mode-locked fiber laser,” Opt. Commun.200(1-6), 389–399 (2001). [CrossRef]
  22. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012). [CrossRef]
  23. C. H. Henry, “Theory of the linewidth of semiconductor-lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982). [CrossRef]
  24. A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A72(3), 033808 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited