OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25573–25581

Heterogeneous lithium niobate photonics on silicon substrates

Payam Rabiei, Jichi Ma, Saeed Khan, Jeff Chiles, and Sasan Fathpour  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25573-25581 (2013)
http://dx.doi.org/10.1364/OE.21.025573


View Full Text Article

Enhanced HTML    Acrobat PDF (1423 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A platform for the realization of tightly-confined lithium niobate photonic devices and circuits on silicon substrates is reported based on wafer bonding and selective oxidation of refractory metals. The heterogeneous photonic platform is employed to demonstrate high-performance lithium niobate microring optical resonators and Mach-Zehnder optical modulators. A quality factor of ~7.2 × 104 is measured in the microresonators, and a half-wave voltage-length product of 4 V.cm and an extinction ratio of 20 dB is measured in the modulators.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.4000) Optical devices : Microstructure fabrication
(230.5750) Optical devices : Resonators
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: August 22, 2013
Revised Manuscript: October 7, 2013
Manuscript Accepted: October 8, 2013
Published: October 18, 2013

Citation
Payam Rabiei, Jichi Ma, Saeed Khan, Jeff Chiles, and Sasan Fathpour, "Heterogeneous lithium niobate photonics on silicon substrates," Opt. Express 21, 25573-25581 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25573


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  2. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  3. J. Yang, Z. Mi, and P. Bhattacharya, “Groove-coupled InGaAs/GaAs quantum dot laser/waveguide on silicon,” J. Lightwave Technol.25(7), 1826–1831 (2007). [CrossRef]
  4. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  5. R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” IEEE J. Quantum Electron.30(10), 2356–2360 (1994). [CrossRef]
  6. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006). [CrossRef] [PubMed]
  7. K. K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett.92(6), 061109 (2008). [CrossRef]
  8. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett.22(24), 1834–1836 (1997). [CrossRef] [PubMed]
  9. S. Tanzilli, H. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37(1), 26–28 (2001). [CrossRef]
  10. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000). [CrossRef]
  11. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun.140(4-6), 245–249 (1997). [CrossRef]
  12. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000). [CrossRef]
  13. A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel Mach-Zehnder optical modulator,” Electron. Lett.46(3), 220–222 (2010). [CrossRef]
  14. M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Independent control of index and profiles in proton-exchanged lithium niobate guides,” Opt. Lett.8(2), 114–115 (1983). [CrossRef] [PubMed]
  15. R. C. Alferness, V. Ramaswamy, S. Korotky, M. Divino, and L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 µm,” IEEE J. Quantum Electron.18(10), 1807–1813 (1982). [CrossRef]
  16. Y. S. Lee, G. D. Kim, W. J. Kim, S. S. Lee, W. G. Lee, and W. H. Steier, “Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices,” Opt. Lett.36(7), 1119–1121 (2011). [CrossRef] [PubMed]
  17. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express20(4), 4032–4038 (2012). [CrossRef] [PubMed]
  18. I. Bakish, R. Califa, T. Ilovitsh, V. Artel, G. Winzer, K. Voigt, L. Zimmermann, E. Shekel, C. N. Sukenik, and A. Zadok, “Voltage-Induced Phase Shift in a Hybrid LiNbO3-on-Silicon Mach-Zehnder Interferometer,” in Advanced Photonics 2013, H. Chang, V. Tolstikhin, T. Krauss, and M. Watts, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper IW4A.2.
  19. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett.85(20), 4603–4605 (2004). [CrossRef]
  20. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293 (1998). [CrossRef]
  21. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett.86(16), 161115 (2005). [CrossRef]
  22. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express17(26), 24261–24268 (2009). [CrossRef] [PubMed]
  23. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007). [CrossRef]
  24. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007). [CrossRef]
  25. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum,” Opt. Express21(6), 6967–6972 (2013). [CrossRef] [PubMed]
  26. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep.22(6), 269–322 (1998). [CrossRef]
  27. N. Matsumoto and K. Kumabe, “AlGaAs–GaAs semiconductor ring lasers,” Jpn. J. Appl. Phys.16(8), 1395–1398 (1977). [CrossRef]
  28. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  29. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett.22(16), 1244–1246 (1997). [CrossRef] [PubMed]
  30. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol.20(11), 1968–1975 (2002). [CrossRef]
  31. J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takastsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s X-Cut LiNbO3 optical modulator with two-step back-slot structure,” J. Lightwave Technol.20(12), 2110–2114 (2002). [CrossRef]
  32. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited