OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25643–25654

Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy

Marcel Pfeifer, Alexander Ruf, and Peer Fischer  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25643-25654 (2013)
http://dx.doi.org/10.1364/OE.21.025643


View Full Text Article

Enhanced HTML    Acrobat PDF (2243 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(260.2030) Physical optics : Dispersion
(260.6970) Physical optics : Total internal reflection
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Spectroscopy

History
Original Manuscript: June 28, 2013
Revised Manuscript: August 21, 2013
Manuscript Accepted: September 12, 2013
Published: October 21, 2013

Citation
Marcel Pfeifer, Alexander Ruf, and Peer Fischer, "Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy," Opt. Express 21, 25643-25654 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lüdeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc.133, 5704–5707(2011). [CrossRef] [PubMed]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010). [CrossRef]
  3. M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: a new avenue to robust and versatile physical chemosensors,” Procedia Engineering5, 1001–1004(2010). [CrossRef]
  4. C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011). [CrossRef]
  5. J. E. Bertie, R. N. Jones, and C. D. Keefe, “Infrared intensities of liquids XII: accurate optical constants and molar absorption coefficients between 6225 and 500 cm-1 of Benzene at 25 °C, from spectra recorded in several laboratories,” Appl. Spectrosc.47, 891–911(1993). [CrossRef]
  6. S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013). [CrossRef] [PubMed]
  7. R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump-probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys.45, 125101(2012). [CrossRef]
  8. L. a. Skvortsov and E. M. Maksimov, “Application of laser photothermal spectroscopy for standoff detection of trace explosive residues on surfaces,” Quantum Electron.40, 565–578(2010). [CrossRef]
  9. M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science191, 183–185(1976). [CrossRef] [PubMed]
  10. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast.” Science330, 353–356(2010). [CrossRef] [PubMed]
  11. P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett.1, 3323–3327(2010). [CrossRef]
  12. M. Celebrano, P. Kukura, A. Renn, and V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics5, 95–98(2011). [CrossRef]
  13. S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65, 167–180(2002). [CrossRef]
  14. A. H. Pfund, “The dispersion of CS2and CCL4in the infrared,” J. Opt. Soc. Am.25, 351–354(1935). [CrossRef]
  15. J. H. Jaffe, “The measurement of refractive indexes of liquids in the infrared,” J. Opt. Soc. Am.41, 166–169(1951). [CrossRef]
  16. J. H. Jaffe and U. Oppenheim, “Infrared dispersion of liquids by critical angle refractometry,” J. Opt. Soc. Am.47, 782–784(1957). [CrossRef] [PubMed]
  17. R. J. Korniski and W. L. Wolfe, “Infrared refractometer measurements of adhesives,” Appl. Opt.17, 3138–3142(1978). [CrossRef] [PubMed]
  18. R. E. Kagarise and J. Mayfield, “Simple interferometer for dispersion measurements of liquids in the 2 – 22 μ m region,” J. Opt. Soc. Am.48, 430–431(1958). [CrossRef]
  19. P. N. Schatz, “Infrared dispersion measurements and integrated absorption coefficients for pure liquid Benzene,” J. Chem. Phys.32, 894–899(1960). [CrossRef]
  20. J. Hawranek and R. Jones, “The determination of the optical constants of Benzene and Chloroform in the IR by thin film transmission,” Spectrochim. Acta, Part A32, 111–123(1976). [CrossRef]
  21. J. Fahrenfort and W. M. Visser, “On the determination of optical constants in the infrared by attenuated total reflection,” Spectrochim. Acta18, 1103–1108(1962).
  22. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt.5, 1550–1567(1966). [CrossRef] [PubMed]
  23. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.
  24. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis(John Wiley & Sons, 1996).
  25. D. P. Almond and P. M. Patel, Photothermal Science and Techniques(Chapman & Hall, London, 1996), 1st ed.
  26. I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Muehlig, Handbook of Mathematics(SpringerBerlin, 2007), 5th ed.
  27. H. W. Becker, “Einsatz photothermischer Strahlablenkung zur Charakterisierung dünner optischer Schichten und Bestimmung der Temperaturleitfähigkeit von Gradientenwerkstoffen,” Ph.D. thesis (2000).
  28. C. A. J. Putman, B.-t. G. D. Grooth, N. F. V. Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys.72, 6–12(1992). [CrossRef]
  29. S. Barnett, C. Fabre, and A. Maitre, “Ultimate quantum limits for resolution of beam displacements,” Eur. Phys. J. D22, 513–519(2003). [CrossRef]
  30. D. Starling, P. Dixon, A. Jordan, and J. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A80, 041803(2009). [CrossRef]
  31. M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express19, 16508–16517(2011). [CrossRef] [PubMed]
  32. P. Dixon, D. Starling, A. Jordan, and J. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett.102, 173601(2009). [CrossRef] [PubMed]
  33. Data sheet for Trichloroperfluorooctylsilane (TPS) from Sigma Aldrich.
  34. R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers,” J. Colloid Interface Sci.100, 465–496(1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited