OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25664–25669

All-optical phase discrimination using SOA

Mark J. Power, Roderick P. Webb, and Robert J. Manning  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25664-25669 (2013)
http://dx.doi.org/10.1364/OE.21.025664


View Full Text Article

Enhanced HTML    Acrobat PDF (1639 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the first experimental demonstration of a novel all-optical phase discrimination technique, which can separate the two orthogonal phase components of a signal onto different frequencies. This method exploits nonlinear mixing in a semiconductor optical amplifier (SOA) to separate a 10.65 Gbaud QPSK signal into two 10.65 Gb/s BPSK signals which are then demodulated using a delay interferometer (DI). Eye diagrams and spectral measurements verify correct operation and a conversion efficiency greater than 9 dB is observed on both output BPSK channels when compared with the input QPSK signal.

© 2013 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 18, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 14, 2013
Published: October 21, 2013

Citation
Mark J. Power, Roderick P. Webb, and Robert J. Manning, "All-optical phase discrimination using SOA," Opt. Express 21, 25664-25669 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25664


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. P. Webb, M. Power, and R. J. Manning, “Phase-sensitive frequency conversion of quadrature modulated signals,” Opt. Express21(10), 12713–12727(2013). [CrossRef] [PubMed]
  2. A. Uskov, J. Mørk, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65, 944–946(1994).
  3. L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett.59(5), 499–501(1991). [CrossRef]
  4. K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156(1992). [CrossRef]
  5. R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011). [CrossRef]
  6. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15(6), 2981–2986(2007). [CrossRef] [PubMed]
  7. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997). [CrossRef]
  8. S. Diez, R. Ludwig, E. Patzak, H. G. Weber, G. Eisenstein, and R. Schimpe, “Four-wave mixing in semiconductor laser amplifiers: phase matching in configurations with three input waves,” in Lasers and Electro-Optics,1996. CLEO '96., Summaries of papers presented at the Conference on, 1996), 505–506.
  9. P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett.15(3), 473–475(2003). [CrossRef]
  10. R. Noé, “Phase Noise-Tolerant Synchronous QPSK/BPSK Baseband-Type Intradyne Receiver Concept With Feedforward Carrier Recovery,” J. Lightwave Technol.23(2), 802–808(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited