OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25734–25743

High-sensitive and broad-dynamic-range quantitative phase imaging with spectral domain phase microscopy

Yangzhi Yan, Zhihua Ding, Yi Shen, Zhiyan Chen, Chen Zhao, and Yang Ni  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25734-25743 (2013)
http://dx.doi.org/10.1364/OE.21.025734


View Full Text Article

Enhanced HTML    Acrobat PDF (2091 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral domain phase microscopy for high-sensitive and broad-dynamic-range quantitative phase imaging is presented. The phase retrieval is realized in the depth domain to maintain a high sensitivity, while the phase information obtained in the spectral domain is exploited to extend the dynamic range of optical path difference. Sensitivity advantage of phase retrieved in the depth domain over that in the spectral domain is thoroughly investigated. The performance of the proposed depth domain phase based approach is illustrated by phase imaging of a resolution target and an onion skin.

© 2013 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.3170) Microscopy : Interference microscopy

ToC Category:
Microscopy

History
Original Manuscript: September 3, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 11, 2013
Published: October 21, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Yangzhi Yan, Zhihua Ding, Yi Shen, Zhiyan Chen, Chen Zhao, and Yang Ni, "High-sensitive and broad-dynamic-range quantitative phase imaging with spectral domain phase microscopy," Opt. Express 21, 25734-25743 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  2. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  3. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  4. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett.28(19), 1745–1747 (2003). [CrossRef] [PubMed]
  5. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  6. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  7. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007). [CrossRef] [PubMed]
  8. K. Singh, C. Dion, M. R. Lesk, T. Ozaki, and S. Costantino, “Spectral-domain phase microscopy with improved sensitivity using two-dimensional detector arrays,” Rev. Sci. Instrum.82(2), 023706 (2011). [CrossRef] [PubMed]
  9. Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express17(13), 10681–10687 (2009). [CrossRef] [PubMed]
  10. Y. Verma, P. Nandi, K. D. Rao, M. Sharma, and P. K. Gupta, “Use of common path phase sensitive spectral domain optical coherence tomography for refractive index measurements,” Appl. Opt.50(25), E7–E12 (2011). [CrossRef]
  11. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett.31(10), 1462–1464 (2006). [CrossRef] [PubMed]
  12. P. Wang, R. Bista, R. Bhargava, R. E. Brand, and Y. Liu, “Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis,” Opt. Lett.35(17), 2840–2842 (2010). [CrossRef] [PubMed]
  13. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005). [CrossRef] [PubMed]
  14. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt.11(2), 024014 (2006). [CrossRef] [PubMed]
  15. T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A14(10), 2692–2701 (1997). [CrossRef]
  16. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt.45(3), 451–459 (2006). [CrossRef] [PubMed]
  17. H. C. Hendargo, M. Zhao, N. Shepherd, and J. A. Izatt, “Synthetic wavelength based phase unwrapping in spectral domain optical coherence tomography,” Opt. Express17(7), 5039–5051 (2009). [CrossRef] [PubMed]
  18. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett.35(15), 2612–2614 (2010). [CrossRef] [PubMed]
  19. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett.34(21), 3442–3444 (2009). [CrossRef] [PubMed]
  20. E. D. Moore and R. R. McLeod, “Phase-sensitive swept-source interferometry for absolute ranging with application to measurements of group refractive index and thickness,” Opt. Express19(9), 8117–8126 (2011). [CrossRef] [PubMed]
  21. Y. Zhu, N. T. Shaked, L. L. Satterwhite, and A. Wax, “Spectral-domain differential interference contrast microscopy,” Opt. Lett.36(4), 430–432 (2011). [CrossRef] [PubMed]
  22. C. Wang, Z. H. Ding, S. T. Mei, H. Yu, W. Hong, Y. Z. Yan, and W. D. Shen, “Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Lett.37(21), 4555–4557 (2012). [CrossRef] [PubMed]
  23. Y. Z. Yan, Z. H. Ding, L. Wang, C. Wang, and Y. Shen, “High-sensitive quantitative phase imaging with averaged spectral domain phase microscopy,” Opt. Commun.303, 21–24 (2013). [CrossRef]
  24. K. Wang, Z. H. Ding, T. Wu, C. Wang, J. Meng, M. H. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17(14), 12121–12131 (2009). [CrossRef] [PubMed]
  25. J. Meng, Z. H. Ding, J. Li, K. Wang, and T. Wu, “Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography,” Opt. Express18(2), 1261–1270 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited