OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25772–25779

All-optical 10 Gb/s AND logic gate in a silicon microring resonator

Meng Xiong, Lei Lei, Yunhong Ding, Bo Huang, Haiyan Ou, Christophe Peucheret, and Xinliang Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 25772-25779 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-optical AND logic gate in a single silicon microring resonator is experimentally demonstrated at 10 Gb/s with 50% RZ-OOK signals. By setting the wavelengths of two intensity-modulated input pumps on the resonances of the microring resonator, field-enhanced four-wave mixing with a total input power of only 8.5 dBm takes place in the ring, resulting in the generation of an idler whose intensity follows the logic operation between the pumps. Clear and open eye diagrams with a bit-error- ratio below 10−9 are achieved.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(130.3120) Integrated optics : Integrated optics devices
(130.3750) Integrated optics : Optical logic devices
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Integrated Optics

Original Manuscript: June 19, 2013
Revised Manuscript: August 27, 2013
Manuscript Accepted: September 6, 2013
Published: October 22, 2013

Meng Xiong, Lei Lei, Yunhong Ding, Bo Huang, Haiyan Ou, Christophe Peucheret, and Xinliang Zhang, "All-optical 10 Gb/s AND logic gate in a silicon microring resonator," Opt. Express 21, 25772-25779 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. M. Saleh and J. M. Simmons, “Evolution toward the next-generation core optical network,” J. Lightwave Technol.24(9), 3303–3321 (2006). [CrossRef]
  2. M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron.6(6), 1363–1374 (2000). [CrossRef]
  3. L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett.15(4), 593–595 (2003). [CrossRef]
  4. C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, “All-optical packet address and payload separation,” IEEE Photon. Technol. Lett.14(12), 1728–1730 (2002). [CrossRef]
  5. J. H. Huh, H. Homma, H. Nakayama, and Y. Maeda, “All optical switching triode based on cross-gain modulation in semiconductor optical amplifier,” in Proceedings of IEEE Conference on Photonics in Switching, pp. 73–74 (2007). [CrossRef]
  6. X. L. Zhang, Y. Wang, J. Q. Sun, D. M. Liu, and D. X. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express12(3), 361–366 (2004). [CrossRef] [PubMed]
  7. S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett.41(18), 1027–1028 (2005). [CrossRef]
  8. K. Sun, J. Qiu, M. Rochette, and L. R. Chen, “All-optical logic gates (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” in Proceedings of the 35th European Conference and Exhibition on Optical Communication, (2009).
  9. J. Wang, Q. Z. Sun, and J. Q. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express17(15), 12555–12563 (2009). [CrossRef] [PubMed]
  10. J. Wang, J. Q. Sun, Q. Z. Sun, D. L. Wang, X. F. Zhang, D. X. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett.20(3), 211–213 (2008). [CrossRef]
  11. A. Bogoni, X. X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gb/s all-optical logic functions in a PPLN waveguide,” in Proceedings of the 36th European Conference and Exhibition on Optical Communication, paper Mo.1.A.5 (2010). [CrossRef]
  12. G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photon. Technol. Lett.18(8), 917–919 (2006). [CrossRef]
  13. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  14. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010). [CrossRef]
  15. M. H. Pu, H. Hu, M. Galili, H. Ji, C. Peucheret, L. K. Oxenløwe, K. Yvind, P. Jeppesen, and J. M. Hvam, “15-THz tunable wavelength conversion of picosecond pulses in a silicon waveguide,” IEEE Photon. Technol. Lett.23(19), 1409–1411 (2011). [CrossRef]
  16. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian H Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express19(21), 19886–19894 (2011). [CrossRef] [PubMed]
  17. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008). [CrossRef]
  18. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express15(12), 7802–7809 (2007). [CrossRef] [PubMed]
  19. T. Ye, C. S. Yan, Y. Y. Lu, F. F. Liu, and Y. K. Su, “All-optical regenerative NRZ-to-RZ format conversion using coupled ring-resonator optical waveguide,” Opt. Express16(20), 15325–15331 (2008). [CrossRef] [PubMed]
  20. T. Liang, L. Nunes, M. Tsuchiya, K. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. Tsang, “High speed logic gate using two photon absorption in silicon waveguides,” Opt. Commun.265(1), 171–174 (2006). [CrossRef]
  21. M. Khorasaninejad and S. S. Saini, “All-optical logic gates using nonlinear effects in silicon-on-insulator waveguides,” Appl. Opt.48(25), F31–F37 (2009). [CrossRef] [PubMed]
  22. F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” Opt. Express19(21), 20364–20371 (2011). [CrossRef] [PubMed]
  23. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express15(3), 924–929 (2007). [CrossRef] [PubMed]
  24. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett.35(10), 1620–1622 (2010). [CrossRef] [PubMed]
  25. S. Mikroulis, H. Simos, E. Roditi, A. Chipouras, and D. Syvridis, “40-Gb/s NRZ and RZ operation of an all-optical AND logic gate based on a passive InGaAsP/InP microring resonator,” J. Lightwave Technol.24(3), 1159–1164 (2006). [CrossRef]
  26. S. Mikroulis, H. Simos, E. Roditi, and D. Syvridis, “Ultrafast all-optical AND logic operation based on four-wave mixing in a passive InGaAsP-InP microring resonator,” IEEE Photon. Technol. Lett.17(9), 1878–1880 (2005). [CrossRef]
  27. T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, “All-optical AND/NAND logic gates using semiconductor microresonators,” IEEE Photon. Technol. Lett.15(10), 1422–1424 (2003). [CrossRef]
  28. F. Li, M. Pelusi, D.-X. Xu, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator,” Opt. Express19(23), 22410–22416 (2011). [CrossRef] [PubMed]
  29. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express16(7), 4881–4887 (2008). [CrossRef] [PubMed]
  30. X. L. Cai, D. X. Huang, and X. L. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express14(23), 11304–11311 (2006). [CrossRef] [PubMed]
  31. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” Electron. Lett.38(25), 1669–1670 (2002). [CrossRef]
  32. M. H. Pu, L. Liu, H. Y. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010). [CrossRef]
  33. J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett.25(17), 1699–1702 (2013). [CrossRef]
  34. J. Cardenas, J. S. Levy, G. Wiederhecker, A. Turner-Foster, A. L. Gaeta, and M. Lipson, “Efficient frequency conversion at low-powers in a silicon microresonator using carrier extraction,” in Proc. Conf. Lasers Electro-Optics, CLEO, paper CTuX2, (2011). [CrossRef]
  35. L. L. Li, J. Wu, J. F. Qiu, B. B. Wu, Y. Li, K. Xu, X. B. Hong, and J. T. Lin, “Reconfigurable and simultaneous implementation of all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” in Proceedings of the 36th European Conference and Exhibition on Optical Communication, paper P2.17 (2010).
  36. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited