OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25780–25787

Linear array of InAs APDs operating at 2 µm

Ian C. Sandall, Shiyong Zhang, and Chee Hing Tan  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25780-25787 (2013)
http://dx.doi.org/10.1364/OE.21.025780


View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A linear array of avalanche photodiodes (APDs) comprising of 128 pixels was fabricated from InAs. The uniformity of the dark currents and avalanche gain was investigated at 77, 200 K and room temperature. The array shows highly uniform results apart from some defective pixels at the edge of the arrays. At 200 K and at a wavelength of 2.04 µm, we obtained an unmultiplied responsivity of 0.61 A/W at 0 V, along with a gain of 8.5 at a bias of 10 V.

© 2013 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(040.1345) Detectors : Avalanche photodiodes (APDs)
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging
(250.0040) Optoelectronics : Detectors

ToC Category:
Detectors

History
Original Manuscript: July 5, 2013
Revised Manuscript: October 8, 2013
Manuscript Accepted: October 14, 2013
Published: October 22, 2013

Citation
Ian C. Sandall, Shiyong Zhang, and Chee Hing Tan, "Linear array of InAs APDs operating at 2 µm," Opt. Express 21, 25780-25787 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25780


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004). [CrossRef]
  2. I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE2004(5406), 133–144 (2004). [CrossRef]
  3. A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998). [CrossRef]
  4. Z. Zhang, Y. Zhao, Y. Zhang, L. Wu, and J. Su, “A real-time noise filtering strategy for photon counting 3D imaging lidar,” Opt. Express21(8), 9247–9254 (2013). [CrossRef] [PubMed]
  5. A. Joshi and S. Datta, “High-speed, large-area, P-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE8533, 83533D–83542D (2012). [CrossRef]
  6. N. A. Bazaev, Y. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012). [CrossRef]
  7. E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013). [CrossRef] [PubMed]
  8. Y. Shimizu, J. Ishii, Y. Kaneko, F. Sakuma, and A. Ono, “State of the arts of the infrared radiation thermometry standards in the middle temperature range at NMIJ,” SICE Annual Conference 2004. 1803–1807 (2004).
  9. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008). [CrossRef]
  10. A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011). [CrossRef]
  11. S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008). [CrossRef]
  12. V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005). [CrossRef]
  13. J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006). [CrossRef]
  14. R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006). [CrossRef]
  15. D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011). [CrossRef]
  16. O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004). [CrossRef]
  17. S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012). [CrossRef]
  18. P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011). [CrossRef]
  19. M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron.16(3), 381–394 (1973). [CrossRef]
  20. P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status SolidiC9, 310–313 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited