OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25834–25840

Use of quasi-local photorefractive response to generated superficial self-written waveguides in lithium niobate

Eugenio Fazio, Silviu T. Popescu, Adrian Petris, Fabrice Devaux, Mauro Ragazzi, Mathieu Chauvet, and Valentin I. Vlad  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25834-25840 (2013)
http://dx.doi.org/10.1364/OE.21.025834


View Full Text Article

Enhanced HTML    Acrobat PDF (2202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the formation of surface self-written waveguides by means of surface pyrolitons in lithium niobate. By a specific orientation of the crystal axis the quasi-local slow photorefractive response of lithium niobate was used to induce a self-confined beam exactly at the crystal-air interface. The mode profile of the photo-induced waveguide is strongly asymmetric due to the interface presence.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3730) Integrated optics : Lithium niobate
(190.0190) Nonlinear optics : Nonlinear optics
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.5330) Nonlinear optics : Photorefractive optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Integrated Optics

History
Original Manuscript: August 6, 2013
Revised Manuscript: September 4, 2013
Manuscript Accepted: September 5, 2013
Published: October 22, 2013

Citation
Eugenio Fazio, Silviu T. Popescu, Adrian Petris, Fabrice Devaux, Mauro Ragazzi, Mathieu Chauvet, and Valentin I. Vlad, "Use of quasi-local photorefractive response to generated superficial self-written waveguides in lithium niobate," Opt. Express 21, 25834-25840 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25834


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.13(15), 479–482 (1964). [CrossRef]
  2. A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun.55(3), 201–206 (1985). [CrossRef]
  3. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett.68(7), 923–926 (1992). [CrossRef] [PubMed]
  4. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett.18(13), 1035–1037 (1993). [CrossRef] [PubMed]
  5. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett.21(1), 24–26 (1996). [CrossRef] [PubMed]
  6. T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans Comp. Pack. Technol.24(3), 500–509 (2001). [CrossRef]
  7. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett.79(8), 1079–1081 (2001). [CrossRef]
  8. M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(13), 931–934 (1996). [CrossRef] [PubMed]
  9. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, H. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogenities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966). [CrossRef]
  10. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett.71(4), 533–536 (1993).
  11. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999). [CrossRef] [PubMed]
  12. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett.85(12), 2193–2195 (2004). [CrossRef]
  13. K. K. Wong, ed., Properties of Lithium Niobate, EMIS Datareviews Series No. 28 (INSPEC, London, UK, 2002).
  14. V. I. Vlad, A. Petris, A. Bosco, E. Fazio, and M. Bertolotti, “3D-soliton waveguides in lithium niobate for femtosecond light pulse,” J. Opt. A, Pure Appl. Opt.8(7), S477–S482 (2006). [CrossRef]
  15. V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett.42(8), 463–465 (2006). [CrossRef]
  16. S. T. Popescu, A. Petris, V. I. Vlad, and E. Fazio, “Arrays of soliton waveguides in lithium niobate for parallel coupling,” J. Optoelectron. Adv. Mater.12, 19–23 (2010).
  17. M. Chauvet, L. A. Fares, B. Guichardaz, F. Devaux, and S. Ballandras, “Integrated optofluidic index sensor based on self-trapped beams in LiNbO3,” Appl. Phys. Lett.101, 181104-1–181104-4 (2012).
  18. T. Fiumara and E. Fazio, “Design of a refractive-index sensor based on surface soliton waveguides,” J. Opt., submitted to(2013).
  19. J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express17(24), 22209–22216 (2009). [CrossRef] [PubMed]
  20. J. Safioui, E. Fazio, F. Devaux, and M. Chauvet, “Surface-wave pyroelectric photorefractive solitons,” Opt. Lett.35(8), 1254–1256 (2010). [CrossRef] [PubMed]
  21. M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett.20(20), 2075–2077 (1995). [CrossRef] [PubMed]
  22. G. S. Garcia Quirino, J. J. Sanchez-Mondragon, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A51(2), 1571–1577 (1995). [CrossRef] [PubMed]
  23. V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron.33(12), 1205–1221 (2001). [CrossRef]
  24. V. Aleshkevich, Y. Kartashov, A. Egorov, and V. Vysloukh, “Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary,” Phys. Rev. E64, 056610-1–056610-11 (2001).
  25. T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, “Surface waves with photorefractive nonlinearity,” Phys. Rev. A76, 013827–1–013827-7 (2007).
  26. S. A. Chetkin and I. M. Akhmedzhanov, “Optical surface wave in a crystal with diffusion photorefractive nonlinearity,” Quantum Electron.41(11), 980–985 (2011). [CrossRef]
  27. H. Z. Kang, T. H. Zhang, B. H. Wang, C. B. Lou, B. G. Zhu, H. H. Ma, S. M. Liu, J. G. Tian, and J. J. Xu, “(2+1)D surface solitons in virtue of the cooperation of nonlocal and local nonlinearities,” Opt. Lett.34(21), 3298–3300 (2009). [CrossRef] [PubMed]
  28. B. A. Usievich, D. K. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, “Nonlinear surface waves on the boundary of a photorefractive crystal,” Quantum Electron.40(5), 437–440 (2010). [CrossRef]
  29. I. I. Smolyaninov and C. C. Davis, “Near-field optical study of photorefractive surface waves in BaTiO3,” Opt. Lett.24(19), 1367–1369 (1999). [CrossRef] [PubMed]
  30. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I steady state,” Ferroelectrics22(1), 949–960 (1978). [CrossRef]
  31. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A51(2), 1520–1531 (1995). [CrossRef] [PubMed]
  32. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Nonlocal surface-wave solitons,” Phys. Rev. Lett. 98, 213901-1–213901-4 (2007).
  33. M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett.30(15), 1977–1979 (2005). [CrossRef] [PubMed]
  34. E. Fazio, A. Petris, M. Bertolotti, and V. I. Vlad, “Optical bright solitons in lithium niobate and their applications,” in press on Rom. Rep. Phys. (September 2013).
  35. S. T. Popescu, A. Petris, and V. I. Vlad, “Fast writing of soliton waveguides in lithium niobate using low-intensity blue light,” Appl. Phys. B108(4), 799–805 (2012). [CrossRef]
  36. F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B25(6), 1081–1086 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited