OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25841–25850

Folded dipole plasmonic resonators

K. Choonee and R. R. A. Syms  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 25841-25850 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A class of folded ordered plasmonic dipole nanoresonators based on insulator-metal-insulator (IMI) slab waveguides is proposed and studied. This work is motivated by the development of a novel fabrication process that avoids the need for direct write nanolithography and instead relies on accessible UV lithography and other top-down parallel fabrication techniques that result in metallic dolmen structures with nanometre sized gaps. In this context, the dolmen geometry consists of two vertical segments supporting a flat horizontal slab. It is shown using frequency domain finite element analysis that such structures, which are essentially folded dipole antennas, resonate in a similar manner to their linear unfolded counterparts. The effect of the likely fabrication features is also studied.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: August 7, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 16, 2013
Published: October 22, 2013

K. Choonee and R. R. A. Syms, "Folded dipole plasmonic resonators," Opt. Express 21, 25841-25850 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, 2007).
  2. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006), Vol. 4.
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  5. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009). [CrossRef] [PubMed]
  6. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett.7(7), 1947–1952 (2007). [CrossRef]
  7. M. Green and F. M. Liu, “SERS substrates fabricated by island lithography: the silver/pyridine system,” J. Phys. Chem. B107(47), 13015–13021 (2003). [CrossRef]
  8. J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem.60(1), 147–165 (2009). [CrossRef] [PubMed]
  9. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  10. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012). [CrossRef] [PubMed]
  11. R. R. A. Syms, “Sub-micron structuring at mesa edges,” Microelectron. Eng.73–74, 295–300 (2004). [CrossRef]
  12. Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003). [CrossRef]
  13. T. A. Milligan, Modern Antenna Design (Wiley-IEEE Press, 2005).
  14. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007). [CrossRef] [PubMed]
  15. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express15(7), 4198–4204 (2007). [CrossRef] [PubMed]
  16. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  17. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969). [CrossRef]
  18. T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402–073406 (2007). [CrossRef]
  19. Comsol Multiphysics, Available: http://www.comsol.com/
  20. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005). [CrossRef] [PubMed]
  21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  22. T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano7(3), 2751–2757 (2013). [CrossRef] [PubMed]
  23. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited