OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25907–25911

Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO4

Xue Deng, Jing Zhang, Yuchi Zhang, Gang Li, and Tiancai Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25907-25911 (2013)
http://dx.doi.org/10.1364/OE.21.025907


View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Continuous-wave (cw) blue laser generation at 426 nm by frequency doubling with a monolithic periodically poled KTP (PPKTP) cavity is reported in this paper. Without any free mirrors, the standing-wave cavity solely consists of a monolithic PPKTP crystal, and both ends of which are spherically polished and mirror-coated. An output power of 158 mW is obtained when the pump power is 350 mW. The conversion efficiency is 45%. The dependence of the conversion efficiency on the temperature and the incident fundamental power has been discussed. Such a system is integrally stable and compact for long-time operation under temperature control. The system is much more stable than the usual servo lock system for external cavity doubling.

© 2013 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 11, 2013
Revised Manuscript: October 12, 2013
Manuscript Accepted: October 12, 2013
Published: October 22, 2013

Citation
Xue Deng, Jing Zhang, Yuchi Zhang, Gang Li, and Tiancai Zhang, "Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO4," Opt. Express 21, 25907-25911 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25907


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett.68(20), 3020–3023 (1992). [CrossRef] [PubMed]
  2. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998). [CrossRef] [PubMed]
  3. H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett.25(8), 563–565 (2000). [CrossRef] [PubMed]
  4. S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett.89(6), 061116 (2006). [CrossRef]
  5. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76(10), 1234–1236 (2000). [CrossRef]
  6. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97(8), 083604 (2006). [CrossRef] [PubMed]
  7. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett.83(13), 2556–2559 (1999). [CrossRef]
  8. T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A67(3), 033802 (2003). [CrossRef]
  9. J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett.83(7), 1319–1322 (1999). [CrossRef]
  10. Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A58(5), 4056–4077 (1998). [CrossRef]
  11. F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010). [CrossRef] [PubMed]
  12. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett.100(9), 093602 (2008). [CrossRef] [PubMed]
  13. S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express17(5), 3777–3781 (2009). [CrossRef] [PubMed]
  14. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008). [CrossRef] [PubMed]
  15. D. Zhao, Z. Li, Y. Guo, G. Li, J. Wang, and T. Zhang, “Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold,” Acta Phys. Sin.59, 6231–6236 (2010).
  16. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett.16(18), 1400–1402 (1991). [CrossRef] [PubMed]
  17. B. G. Klappauf, Y. Bidel, D. Wilkowski, T. Chanelière, and R. Kaiser, “Detailed study of an efficient blue laser source by second-harmonic generation in a semimonolithic cavity for the cooling of strontium atoms,” Appl. Opt.43(12), 2510–2527 (2004). [CrossRef] [PubMed]
  18. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B24(3), 576–580 (2007). [CrossRef]
  19. K. Danekar, A. Khademian, and D. Shiner, “Blue laser via IR resonant doubling with 71% fiber to fiber efficiency,” Opt. Lett.36(15), 2940–2942 (2011). [CrossRef] [PubMed]
  20. H. Lei, T. Liu, L. Li, S. Yan, J. Wang, and T. Zhang, “CW blue light generation at 429 nm by utilizing second harmonic process with KNbO3,” Chin. Opt. Lett.1, 177–179 (2003).
  21. X. Song, Z. Li, P. Zhang, G. Li, Y. Zhang, J. Wang, and T. Zhang, “Frequency doubling with periodically poled KTP at the fundamental wave of cesium D2 transition,” Chin. Opt. Lett.5, 596–598 (2007).
  22. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988). [CrossRef]
  23. R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun.247(4-6), 481–488 (2005). [CrossRef]
  24. F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun.227(4-6), 389–403 (2003). [CrossRef]
  25. G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, “Precision measurement of ultralow losses of an asymmetric optical microcavity,” Appl. Opt.45(29), 7628–7631 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited