OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25926–25943

Simulation of a metallic SNOM tip illuminated by a parabolic mirror

Josip Mihaljevic, Christian Hafner, and Alfred J. Meixner  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 25926-25943 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate numerically a Scanning Near field Optical Microscope (SNOM) that uses a Parabolic Mirror (PM) to focus a radially polarized beam on a metallic tip. In order to overcome problems - like overestimated near fields or resonances - that arise when only considering finite tips, we have introduced a semi-infinite continuation of the tip, which incorporates the analytic solution of surface waves. For a realistic modeling the right description of the incident field is essential and we have complied with this requirement by a Bessel expansion of the focal fields, which is also applicable to an aplanatic objective. The established numerical model is used for an extensive study of model parameters like tip geometry, illumination directions and tip materials (Ag, Au, Al and Cu). Compared with a simplified inverted microscope configuration, the PM setup shows an increased field enhancement (factor of 2–2.5), which can be ascribed to the efficient coupling of the exciting field to tip surface plasmons.

© 2013 OSA

OCIS Codes
(230.4040) Optical devices : Mirrors
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: July 29, 2013
Revised Manuscript: September 7, 2013
Manuscript Accepted: September 8, 2013
Published: October 23, 2013

Josip Mihaljevic, Christian Hafner, and Alfred J. Meixner, "Simulation of a metallic SNOM tip illuminated by a parabolic mirror," Opt. Express 21, 25926-25943 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399, 134–137 (1999). [CrossRef]
  2. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced raman spectroscopy,” Chem. Phys. Lett.318, 131–136 (2000). [CrossRef]
  3. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006). [CrossRef]
  4. N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” J. Am. Chem. Soc.127, 2533–2537 (2005). [CrossRef] [PubMed]
  5. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed.47, 8178–8191 (2008). [CrossRef]
  6. D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40, 1371–1376 (2009). [CrossRef]
  7. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004). [CrossRef] [PubMed]
  8. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007). PMID: . [CrossRef] [PubMed]
  9. F. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics4, 51–59 (2009). [CrossRef]
  10. X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett.9, 3756–3761 (2009). PMID: . [CrossRef] [PubMed]
  11. J. S. Lee, S. Han, J. Shirdel, S. Koo, D. Sadiq, C. Lienau, and N. Park, “Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method,” Opt. Express19, 12342–12347 (2011). [CrossRef] [PubMed]
  12. H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology17, 3105 (2006). [CrossRef]
  13. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A75, 063822 (2007). [CrossRef]
  14. J. Barthes, G. C. des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys.14, 083041 (2012). [CrossRef]
  15. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79, 645–648 (1997). [CrossRef]
  16. M. Lieb and A. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express8, 458–474 (2001). [CrossRef] [PubMed]
  17. S. Quabis, R. Dorn, M. Eberler, O. Glckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt Commun179, 1–7 (2000). [CrossRef]
  18. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett.33, 681–683 (2008). [CrossRef] [PubMed]
  19. O. J. F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett.70, 705–707 (1997). [CrossRef]
  20. J. T. Krug, E. J. Sanchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys.116, 10895–10901 (2002). [CrossRef]
  21. A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: Understanding tip-enhanced raman scattering,” J. Chem. Phys.122, 184716 (2005). [CrossRef] [PubMed]
  22. R. Esteban, R. Vogelgesang, and K. Kern, “Simulation of optical near and far fields of dielectric apertureless scanning probes,” Nanotechnology17, 475 (2006). [CrossRef]
  23. D. Zhang, U. Heinemeyer, C. Stanciu, M. Sackrow, K. Braun, L. E. Hennemann, X. Wang, R. Scholz, F. Schreiber, and A. J. Meixner, “Nanoscale spectroscopic imaging of organic semiconductor films by plasmonpolariton coupling,” Phys. Rev. Lett.104, 056601 (2010). [CrossRef]
  24. J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap-mode tip-enhanced raman spectroscopy,” J. Raman Spectrosc.44, 227–233 (2013). [CrossRef]
  25. W. Zhang, X. Cui, and O. J. F. Martin, “Local field enhancement of an infinite conical metal tip illuminated by a focused beam,” J. Raman Spectrosc.40, 1338–1342 (2009). [CrossRef]
  26. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons,” Opt. Express15, 12131–12144 (2007). [CrossRef] [PubMed]
  27. C. Hafner, MaX-1: A Visual Electromagnetics Platform for PCs (Wiley, 1998).
  28. C. Hafner, Post-Modern Electromagnetics Using Intelligent MaXwell Solvers (Wiley, ChichesterUK, 1999).
  29. C. Hafner, “Openmax: Graphic platform for computational electromagnetics and computational optics,” http://openmax.ethz.ch/ , ETH Zürich (2013).
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  31. J. Weaver and H. Frederikse, “Optical Properties of Selected Elements” (CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2001), pp. 116–133.
  32. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York and London, 1941).
  33. A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys.303, 233–290 (1899). [CrossRef]
  34. D. Hondros, “über elektromagnetische drahtwellen,” Ann. Phys.335, 905–950 (1909). [CrossRef]
  35. J. Ashley and L. Emerson, “Dispersion relations for non-radiative surface plasmons on cylinders,” Surface Science41, 615–618 (1974). [CrossRef]
  36. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: Surface plasmons,” Phys. Rev. B10, 3038–3051 (1974). [CrossRef]
  37. A. Boag and R. Mittra, “Complex multipole-beam approach to three-dimensional electromagnetic scattering problems,” J. Opt. Soc. Am. A11, 1505–1512 (1994). [CrossRef]
  38. J. S. Ch. Hafner and M. Agio, “Numerical methods for the electrodynamic analysis of nanostructures,” in “Nanoclusters and Nanostructured Surfaces,” A. K. Ray, ed. (American Scientific Publishers: Valencia, CA, 2010).
  39. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii. structure of the image field in an aplanatic system,” Proc. R. Soc. A253, 358–379 (1959). [CrossRef]
  40. C. J. R. Sheppard and P. Török, “Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion,” J. Mod. Opt.44, 803–818 (1997). [CrossRef]
  41. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  42. J. Stamnes, Waves in Focal Regions (Taylor & Francis, 1986).
  43. G. Arfken and H. J. Weber, “Mathematical methods for physicists,” (2005).
  44. C. Debus, M. A. Lieb, A. Drechsler, and A. J. Meixner, “Probing highly confined optical fields in the focal region of a high na parabolic mirror with subwavelength spatial resolution,” J. Microsc.210, 203–208(6) (June2003). [CrossRef] [PubMed]
  45. B. C. Brock, “Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields,” Sandia report, SAND2000-2217-Revised. Sandia National Laboratories, Albuquerque, NM (2001).
  46. J. J. Moré, B. S. Garbow, and K. E. Hillstrom, “The minpack project,” Sources and Development of Mathematical Software88–111 (1984).
  47. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008). [CrossRef] [PubMed]
  48. A. Alparslan and C. Hafner, “Analysis of photonic structures by the multiple multipole program with complex origin layered geometry green’s functions,” J. Comput. Theor. Nanos.9, 479–485 (2012). [CrossRef]
  49. P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced raman scattering,” J. Chem. Phys.76, 751–752 (1982). [CrossRef]
  50. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited