OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25999–26013

Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links

Leimeng Zhuang, Caterina Taddei, Marcel Hoekman, Arne Leinse, René Heideman, Paulus van Dijk, and Chris Roeloffzen  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 25999-26013 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3021 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleXTM waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

© 2013 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Integrated Optics

Original Manuscript: September 3, 2013
Revised Manuscript: October 7, 2013
Manuscript Accepted: October 10, 2013
Published: October 23, 2013

Leimeng Zhuang, Caterina Taddei, Marcel Hoekman, Arne Leinse, René Heideman, Paulus van Dijk, and Chris Roeloffzen, "Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links," Opt. Express 21, 25999-26013 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009). [CrossRef]
  3. D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. (2013). [CrossRef]
  4. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010). [CrossRef]
  5. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
  6. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express18(24), 24648–24653 (2010). [CrossRef] [PubMed]
  7. J. Lloret, J. Sancho, M. Pu, I. Gasulla, K. Yvind, S. Sales, and J. Capmany, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express19(13), 12402–12407 (2011). [CrossRef] [PubMed]
  8. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1, article 29 (2010).
  9. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express16(20), 15880–15886 (2008). [CrossRef] [PubMed]
  10. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010). [CrossRef]
  11. J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany, “Integrated InP frequency discriminator for Phase-modulated microwave photonic links,” Opt. Express21(3), 3726–3736 (2013). [CrossRef] [PubMed]
  12. D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010). [CrossRef] [PubMed]
  13. K. Tan, D. A. I. Marpaung, R. Pant, F. Gao, E. Li, J. Wang, D. Y. Choi, S. Madden, B. Luther-Davies, J. Sun, and B. J. Eggleton, “Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide,” Opt. Express21(2), 2003–2011 (2013). [CrossRef] [PubMed]
  14. D. A. I. Marpaung, L. Chevalier, M. Burla, and C. G. H. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19(25), 24838–24848 (2011). [CrossRef] [PubMed]
  15. L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express21(3), 3114–3124 (2013). [CrossRef] [PubMed]
  16. L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express20(24), 26499–26510 (2012). [CrossRef] [PubMed]
  17. L. Zhuang, M. Hoekman, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay line using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. (2013). [CrossRef]
  18. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3, article 9 (2012).
  19. M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011). [CrossRef] [PubMed]
  20. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguide: bringing slow light to applications,” Laser Photon. Rev.6(1), 74–96 (2012). [CrossRef]
  21. A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. A. I. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” In: Proceedings of SPIE Optics & Optoelectronics 8767, (Proceedings of Integrated Photonics: Materials, Devices, and Applications II), 1–13 (2013). [CrossRef]
  22. L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011). [CrossRef] [PubMed]
  23. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012). [CrossRef]
  24. H. Chi, X. Zou, and J. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modualtion to intensity modulation conversion using a dispersive device,” J. Lightwave Technol.27(5), 511–521 (2009). [CrossRef]
  25. A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. S. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using a Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5(1), 5500110 (2013).
  26. L. Liu, S. Zheng, X. Zhang, X. Jin, and H. Chi, “Performances improvement in radio over fiber link through carrier suppression using stimulated brillouin scattering,” Opt. Express18(11), 11827–11837 (2010). [CrossRef] [PubMed]
  27. V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. Mckinney, and K. J. Williams, “Phase modualtion with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links,” IEEE trans. MTT55(9), 1978–1985 (2007). [CrossRef]
  28. M. J. LaGasse and S. Thaniyavarn, “Bias-free high-dynamic-range phase-modulated fiber-optic link,” IEEE Photon. Technol. Lett.9(5), 681–683 (1997). [CrossRef]
  29. T. Darcie and P. Driessen, “Class-AB techniques for high-dynamic-range microwave-photonic links,” IEEE Photon. Technol. Lett.18(8), 929–931 (2006). [CrossRef]
  30. J. Bull, T. Darcie, J. Zhang, H. Kato, and N. Jaeger, “Broadband class-AB microwave-photonic link using polarization modulation,” IEEE Photon. Technol. Lett.18(9), 1073–1075 (2006). [CrossRef]
  31. C. H. Cox III, Analog Optical Links (Cambridge, 2004).
  32. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).
  33. L. Nichols, K. Williams, and R. Estman, “Optimizing the ultrawide-band photonic link,” IEEE Trans. Microw. Theory Tech.45(8), 1384–1389 (1997). [CrossRef]
  34. E. Ackerman, S. Wanuga, J. MacDonald, and J. Prince, “Balanced receiver external modulation fiber-optic link architecture with reduced noise figure,” in Proc. IEEE MTT-S Int. Microwave Symp.2, 723–726 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited