OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26103–26112

Beating the classical limit: A diffraction-limited spectrograph for an arbitrary input beam

Christopher H. Betters, Sergio G. Leon-Saval, J. Gordon Robertson, and Joss Bland-Hawthorn  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26103-26112 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2934 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a new approach to classical fiber-fed spectroscopy. Our method is to use a photonic lantern that converts an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs. For the highest throughput, the number of outputs must be matched to the total number of unpolarized spatial modes on input. This approach has many advantages: (i) after the lantern, the instrument is constructed from ‘commercial off the shelf’ components; (ii) the instrument is the minimum size and mass configuration at a fixed resolving power and spectral order; (iii) the throughput is better than 60% (slit to detector, including detector QE of ~80%); (iv) the scattered light at the detector can be less than 0.1% (total power). Our first implementation operates over 1545-1555 nm (limited by the detector) with a spectral resolution of 0.055nm (R~30,000) using a 1 × 7 (1 multi-mode input to 7 single-mode outputs) photonic lantern. This approach is a first step towards a fully integrated, multimode photonic microspectrograph.

© 2013 Optical Society of America

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(300.6190) Spectroscopy : Spectrometers
(350.1260) Other areas of optics : Astronomical optics

ToC Category:

Original Manuscript: August 28, 2013
Manuscript Accepted: October 9, 2013
Published: October 24, 2013

Christopher H. Betters, Sergio G. Leon-Saval, J. Gordon Robertson, and Joss Bland-Hawthorn, "Beating the classical limit: A diffraction-limited spectrograph for an arbitrary input beam," Opt. Express 21, 26103-26112 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE7735, 77350N, 77350N-9 (2010). [CrossRef]
  2. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express18(8), 8430–8439 (2010). [CrossRef] [PubMed]
  3. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett.30(19), 2545–2547 (2005). [CrossRef] [PubMed]
  4. D. Noordegraaf, P. M. W. Skovgaard, R. H. Sandberg, M. D. Maack, J. Bland-Hawthorn, J. S. Lawrence, and J. Lægsgaard, “Nineteen-port photonic lantern with multimode delivery fiber,” Opt. Lett.37(4), 452–454 (2012). [CrossRef] [PubMed]
  5. D. Noordegraaf, P. M. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express17(3), 1988–1994 (2009). [CrossRef] [PubMed]
  6. J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H. G. Löhmannsröben, A. J. Horton, J. G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun2, 581 (2011). [CrossRef] [PubMed]
  7. C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, W. Couch, K. Freeman, H.-G. Löhmannsröben, L. Gers, K. Glazebrook, R. Haynes, S. Lee, J. O’Byrne, S. Miziarski, M. M. Roth, B. Schmidt, C. G. Tinney, and J. Zheng, “GNOSIS: The First Instrument to Use Fiber Bragg Gratings for OH Suppression,” Astron. J.145(2), 51 (2013). [CrossRef]
  8. S. Shaklan and F. Roddier, “Coupling starlight into single-mode fiber optics,” Appl. Opt.27(11), 2334–2338 (1988). [CrossRef] [PubMed]
  9. A. J. Horton and J. Bland-Hawthorn, “Coupling light into few-mode optical fibres I: The diffraction limit,” Opt. Express15(4), 1443–1453 (2007). [CrossRef] [PubMed]
  10. R. R. Thomson, R. J. Harris, T. A. Birks, G. Brown, J. Allington-Smith, and J. Bland-Hawthorn, “Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics,” Opt. Lett.37(12), 2331–2333 (2012). [CrossRef] [PubMed]
  11. S. G. Leon-Saval, C. H. Betters, and J. Bland-Hawthorn, “The Photonic TIGER: a multicore fiber-fed spectrograph,” Proc. SPIE8450, 84501K, 84501K-8 (2012). [CrossRef]
  12. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express19(6), 5698–5705 (2011). [CrossRef] [PubMed]
  13. I. Spaleniak, N. Jovanovic, S. Gross, M. Ireland, J. Lawrence, and M. Withford, “Enabling photonic technologies for seeing-limited telescopes: fabrication of integrated photonic lanterns on a chip,” Proc. SPIE8450, 845015, 845015-8 (2012). [CrossRef]
  14. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  15. C. Palmer and E. Loewen, Diffraction Grating Handbook, 6 ed. (Newport Corporation, 2005).
  16. J. G. Robertson, “Quantifying resolving power in astronomical spectra,” Publ. Astron. Soc. Aust.30, e048 (2013). [CrossRef]
  17. J. G. Robertson and J. Bland-Hawthorn, “Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit,” Proc. SPIE8446, 844623, 844623-13 (2012). [CrossRef]
  18. P. Belland and J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt.21(3), 522–527 (1982). [CrossRef] [PubMed]
  19. C. H. Betters, S. G. Leon-Saval, J. Bland-Hawthorn, and G. Robertson, “Demonstration and design of a compact diffraction limited spectrograph,” Proc. SPIE8446, 84463H, 84463H-9 (2012). [CrossRef]
  20. C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. A. Smith, L. Waller, J. D. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE5492, 998–1009 (2004). [CrossRef]
  21. W. Saunders, T. Bridges, P. Gillingham, R. Haynes, G. A. Smith, J. D. Whittard, V. Churilov, A. Lankshear, S. Croom, D. Jones, and C. Boshuizen, “AAOmega: a scientific and optical overview,” Proc. SPIE5492, 389–400 (2004). [CrossRef]
  22. J. C. Olaya, S. G. Leon-Saval, D. Schirdewahn, K. Ehrlich, D. M. Haynes, and R. Haynes, “1:61 photonic lanterns for astrophotometry: a performance study,” Mon. Not. R. Astron. Soc.427(2), 1194–1208 (2012). [CrossRef]
  23. N. Cvetojevic, N. Jovanovic, C. H. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys.544, L1 (2012). [CrossRef]
  24. N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express20(3), 2062–2072 (2012). [CrossRef] [PubMed]
  25. W. Livingston and L. Wallace, An atlas of the solar spectrum in the infrared from 1850 to 9000 cm-1 (1.1 to 5.4 micrometer) (NSO Technical Report, Tucson: National Solar Observatory, National Optical Astronomy Observatory, 1991).
  26. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited