OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26162–26173

Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks

Maia Brunstein, Kai Wicker, Karine Hérault, Rainer Heintzmann, and Martin Oheim  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26162-26173 (2013)
http://dx.doi.org/10.1364/OE.21.026162


View Full Text Article

Enhanced HTML    Acrobat PDF (2169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Most structured illumination microscopes use a physical or syn–thetic grating that is projected into the sample plane to generate a periodic illumination pattern. Albeit simple and cost-effective, this arrangement hampers fast or multi-color acquisition, which is a critical requirement for time-lapse imaging of cellular and sub-cellular dynamics. In this study, we designed and implemented an interferometric approach allowing large-field, fast, dual-color imaging at an isotropic 100-nm resolution based on a sub-diffraction fringe pattern generated by the interference of two colliding evanescent waves. Our all-mirror-based system generates illumination pat-terns of arbitrary orientation and period, limited only by the illumination aperture (NA = 1.45), the response time of a fast, piezo-driven tip-tilt mirror (10 ms) and the available fluorescence signal. At low µW laser powers suitable for long-period observation of life cells and with a camera exposure time of 20 ms, our system permits the acquisition of super-resolved 50 µm by 50 µm images at 3.3 Hz. The possibility it offers for rapidly adjusting the pattern between images is particularly advantageous for experiments that require multi-scale and multi-color information. We demonstrate the performance of our instrument by imaging mitochondrial dynamics in cultured cortical astrocytes. As an illustration of dual-color excitation dual-color detection, we also resolve interaction sites between near-membrane mitochondria and the endoplasmic reticulum. Our TIRF-SIM microscope provides a versatile, compact and cost-effective arrangement for super-resolution imaging, allowing the investigation of co-localization and dynamic interactions between organelles – important questions in both cell biology and neurophysiology

© 2013 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 27, 2013
Revised Manuscript: October 7, 2013
Manuscript Accepted: October 8, 2013
Published: October 24, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Maia Brunstein, Kai Wicker, Karine Hérault, Rainer Heintzmann, and Martin Oheim, "Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks," Opt. Express 21, 26162-26173 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26162


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics3(7), 362–364 (2009). [CrossRef]
  2. B. Huang, “Super-resolution optical microscopy: multiple choices,” Curr. Opin. Chem. Biol.14(1), 10–14 (2010). [CrossRef] [PubMed]
  3. B. O. Leung and K. C. Chou, “Review of super-resolution fluorescence microscopy for biology,” Appl. Spectrosc.65(9), 967–980 (2011). [CrossRef] [PubMed]
  4. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  6. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  7. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am.56(11), 1463–1471 (1966). [CrossRef]
  8. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999). [CrossRef]
  9. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  10. J. T. Frohn, “Super-resolution fluorescence microscopy by structured light illumination,” (Ph.D. thesis, Eidgenössische Technische Hochschule (ETH), Zürich, 2000).
  11. L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009). [CrossRef] [PubMed]
  12. O. Gliko, G. D. Reddy, B. Anvari, W. E. Brownell, and P. Saggau, “Standing wave total internal reflection fluorescence microscopy to measure the size of nanostructures in living cells,” J. Biomed. Opt.11(6), 064013 (2006). [CrossRef] [PubMed]
  13. E. Chung, D. Kim, and P. T. C. So, “Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy,” Opt. Lett.31(7), 945–947 (2006). [CrossRef] [PubMed]
  14. M. Beck, M. Aschwanden, and A. Stemmer, “Sub-100-nanometre resolution in total internal reflection fluorescence microscopy,” J. Microsc.232(1), 99–105 (2008). [CrossRef] [PubMed]
  15. E. Chung, D. Kim, Y. Cui, Y. H. Kim, and P. T. C. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens,” Biophys. J.93(5), 1747–1757 (2007). [CrossRef] [PubMed]
  16. R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett.33(14), 1629–1631 (2008). [CrossRef] [PubMed]
  17. O. Gliko, W. E. Brownell, and P. Saggau, “Fast two-dimensional standing-wave total-internal-reflection fluorescence microscopy using acousto-optic deflectors,” Opt. Lett.34(6), 836–838 (2009). [CrossRef] [PubMed]
  18. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009). [CrossRef] [PubMed]
  19. Z. Huang and N. L. Thompson, “Theory for two-photon excitation in pattern photobleaching with evanescent illumination,” Biophys. Chem.47(3), 241–249 (1993). [CrossRef] [PubMed]
  20. G. E. Cragg and P. T. C. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett.25(1), 46–48 (2000). [CrossRef] [PubMed]
  21. A. L. Stout and D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt.28(24), 5237–5242 (1989). [CrossRef] [PubMed]
  22. F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process.21(2), 601–614 (2012). [CrossRef] [PubMed]
  23. K. Wicker, O. Mandula, G. Best, R. Fiolka, and R. Heintzmann, “Phase optimisation for structured illumination microscopy,” Opt. Express21(2), 2032–2049 (2013). [CrossRef] [PubMed]
  24. D. Li, K. Hérault, M. Oheim, and N. Ropert, “FM dyes enter via a store-operated calcium channel and modify calcium signaling of cultured astrocytes,” Proc. Natl. Acad. Sci. U.S.A.106(51), 21960–21965 (2009). [CrossRef] [PubMed]
  25. M. Brunstein, M. Teremetz, C. Tourain, and M. Oheim, “Combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning,” (arXiv.org>physics> http://arxiv.org/abs/1302.1615 , 2013).
  26. R. Rizzuto, M. R. Duchen, and T. Pozzan, “Flirting in little space: the ER/mitochondria Ca2+ liaison,” Sci. STKE2004(215), re1 (2004). [PubMed]
  27. D. A. Rusakov, K. Zheng, and C. Henneberger, “Astrocytes as regulators of synaptic function: A quest for the Ca2+ master key,” Neuroscientist17(5), 513–523 (2011). [CrossRef] [PubMed]
  28. R. T. Doyle, M. J. Szulzcewski, and P. G. Haydon, “Extraction of near-field fluorescence from composite signals to provide high resolution images of glial cells,” Biophys. J.80(5), 2477–2482 (2001). [CrossRef] [PubMed]
  29. A. Rossi, T. J. Moritz, J. Ratelade, and A. S. Verkman, “Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes,” J. Cell Sci.125(18), 4405–4412 (2012). [CrossRef] [PubMed]
  30. S. Takahashi, S. Okada, H. Nishioka, S. Usuki, and K. Takamasu, “Theoretical and numerical analysis of lateral resolution improvement characteristics for fluorescence microscopy using standing evanescent light with image retrieval,” Meas. Sci. Technol.19(8), 084006 (2008). [CrossRef]
  31. G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron42(4), 330–335 (2011). [CrossRef] [PubMed]
  32. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012). [CrossRef] [PubMed]
  33. E. Mudry, K. Belkebir, J. Girard, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics6(5), 312–315 (2012). [CrossRef]
  34. F. Spira, N. S. Mueller, G. Beck, P. von Olshausen, J. Beig, and R. Wedlich-Söldner, “Patchwork organization of the yeast plasma membrane into numerous coexisting domains,” Nat. Cell Biol.14(6), 640–648 (2012). [CrossRef] [PubMed]
  35. M. van ’t Hoff, V. de Sars, and M. Oheim, “A programmable light engine for quantitative single molecule TIRF and HILO imaging,” Opt. Express16(22), 18495–18504 (2008). [CrossRef] [PubMed]
  36. S. Chowdhury, A.-H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express3(8), 1841–1854 (2012). [CrossRef] [PubMed]
  37. K. O’Holleran and M. Shaw, “Polarization effects on contrast in structured illumination microscopy,” Opt. Lett.37(22), 4603–4605 (2012). [CrossRef] [PubMed]
  38. A. Sentenac, K. Belkebir, H. Giovannini, and P. C. Chaumet, “Subdiffraction resolution in total internal reflection fluorescence microscopy with a grating substrate,” Opt. Lett.33(3), 255–257 (2008). [CrossRef] [PubMed]
  39. F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J.32(7), 635–643 (2003). [CrossRef] [PubMed]
  40. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A19(8), 1599–1609 (2002). [CrossRef] [PubMed]
  41. A. Gur, Z. Zalevsky, V. Micó, J. García, and D. Fixler, “The limitations of nonlinear fluorescence effect in super resolution saturated structured illumination microscopy system,” J. Fluoresc.21(3), 1075–1082 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited