OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26182–26191

Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response

Koen Alexander, Thomas Van Vaerenbergh, Martin Fiers, Pauline Mechet, Joni Dambre, and Peter Bienstman  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26182-26191 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1360 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate class I excitability in optically injected microdisk lasers, and propose a possible optical spiking neuron design. The neuron has a clear threshold and an integrating behavior, leading to an output rate-input rate dependency that is comparable to the characteristic of sigmoidal artificial neurons. We also show that the optical phase of the input pulses has influence on the neuron response, and can be used to create inhibitory, as well as excitatory perturbations.

© 2013 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(140.3520) Lasers and laser optics : Lasers, injection-locked
(200.4700) Optics in computing : Optical neural systems
(230.1150) Optical devices : All-optical devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 6, 2013
Revised Manuscript: October 9, 2013
Manuscript Accepted: October 13, 2013
Published: October 24, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Koen Alexander, Thomas Van Vaerenbergh, Martin Fiers, Pauline Mechet, Joni Dambre, and Peter Bienstman, "Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response," Opt. Express 21, 26182-26191 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states: a new framework for neural computation based on perturbations,” Neural Comput.14, 2531–2560 (2002). [CrossRef] [PubMed]
  2. H. Jaeger, “Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication,” Science304, 78–80 (2004). [CrossRef] [PubMed]
  3. B. Schrauwen, M. D’Haene, D. Verstraeten, and J. V. Campenhout, “Compact hardware liquid state machines on FPGA for real-time speech recognition,” Neural Netw.21, 511–23 (2008). [CrossRef] [PubMed]
  4. S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Int. J. Neural Syst.19, 295–308 (2009). [CrossRef] [PubMed]
  5. W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural Netw.10, 1659–1671 (1997). [CrossRef]
  6. E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience) (The MIT Press, 2006), 1st ed.
  7. P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, “A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm,” in “Custom Integrated Circuits Conference (CICC), 2011 IEEE,” (IEEE, San Jose, 2011), 1–4. [CrossRef]
  8. M. A. Nahmias, B. J. Shastri, A. N. Tait, S. Member, and P. R. P. Fellow, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron.16, 1–12 (2013).
  9. S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett.88, 063901 (2002). [CrossRef] [PubMed]
  10. D. Goulding, S. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett.98, 153903 (2007). [CrossRef] [PubMed]
  11. M. Turconi, B. Garbin, M. Feyereisen, M. Giudici, and S. Barland, “Control of excitable pulses in an injection-locked semiconductor laser,” Phys. Rev. E88, 022923 (2013). [CrossRef]
  12. M. A. Nahmias, A. N. Tait, B. J. Shastri, and P. R. Prucnal, “An evanescent hybrid silicon laser neuron,” in “Proc. IEEE Photonics Conference (IPC),” (IEEE, Seattle, 2013), 93–94.
  13. L. Gelens, S. Beri, and J. Danckaert, “Phase-space approach to directional switching in semiconductor ring lasers,” Appl. Phys.1–9 (2009).
  14. S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A374, 739–743 (2010). [CrossRef]
  15. L. Gelens, S. Beri, G. Sande, G. Verschaffelt, and J. Danckaert, “Multistable and excitable behavior in semiconductor ring lasers with broken Z2-symmetry,” Eur. Phys. Journ. D58, 197–207 (2010). [CrossRef]
  16. W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 1–8 (2011). [CrossRef]
  17. Y. De Koninck, K. Huybrechts, G. Van der Sande, J. Danckaert, R. Baets, and G. Morthier, “Nonlinear dynamics of asymmetrically coupled microdisk lasers,” in “LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE,” (IEEE, 2009), 503–504. [CrossRef]
  18. J. Van Campenhout, P. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “Design and optimization of electrically injected InP-based microdisk lasers integrated on and coupled to a SOI waveguide circuit,” J. Lightw. Technol.26, 52–63 (2008). [CrossRef]
  19. P. Mechet, S. Verstuyft, T. D. Vries, T. Spuesens, P. Regreny, D. V. Thourhout, G. Roelkens, and G. Morthier, “Unidirectional III–V microdisk lasers heterogeneously integrated on SOI,” Opt. Express21, 1988–1990 (2013).
  20. S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express3, 35 (2012). [CrossRef]
  21. S. Stankovicić, R. Jones, J. Heck, M. Sysak, D. Van Thourhout, and G. Roelkens, “Die-to-die adhesive bonding procedure for evanescently-coupled photonic devices,” Electrochem. Solid-State Lett.14, H326 (2011). [CrossRef]
  22. L. Liu, R. Kumar, K. Huybrechts, G. Roelkens, E.-j. Geluk, T. Spuesens, T. D. Vries, P. Regreny, D.V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4, 1–6 (2010). [CrossRef]
  23. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, “Cascadable excitability in microrings,” Opt. Express20, 20292–20308 (2012). [CrossRef] [PubMed]
  24. M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B29, 896–900 (2012). [CrossRef]
  25. M. Sorel, P. Laybourn, A. Scirè, S. Balle, G. Giuliani, R. Miglierina, and S. Donati, “Alternate oscillations in semiconductor ring lasers,” Opt. Lett.27, 1992–1994 (2002). [CrossRef]
  26. M. Sorel, G. Giuliani, a. Scire, R. Miglierina, S. Donati, and P. Laybourn, “Operating regimes of gaas-algaas semiconductor ring lasers: experiment and model,” IEEE J. Quant. Electron.39, 1187–1195 (2003). [CrossRef]
  27. J. Van Campenhout, “Thin-film microlasers for the integration of electronic and photonic integrated circuits,” Ph.D. thesis, UGent (2007–2008).
  28. W. Coomans, S. Beri, G. V. D. Sande, L. Gelens, and J. Danckaert, “Optical injection in semiconductor ring lasers,” Phys. Rev. A81, 033802 (2010). [CrossRef]
  29. S. Wieczorek, B. Krauskopf, T. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rept.416, 1–128 (2005). [CrossRef]
  30. K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw.22, 1469–1481 (2011). [CrossRef] [PubMed]
  31. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett.38, 733–5 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited