OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26219–26226

Three-dimensional deep sub-wavelength defect detection using λ = 193 nm optical microscopy

Bryan M. Barnes, Martin Y. Sohn, Francois Goasmat, Hui Zhou, András E. Vladár, Richard M. Silver, and Abraham Arceo  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26219-26226 (2013)
http://dx.doi.org/10.1364/OE.21.026219


View Full Text Article

Enhanced HTML    Acrobat PDF (3553 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical microscopy is sensitive both to arrays of nanoscale features and to their imperfections. Optimizing scattered electromagnetic field intensities from deep sub-wavelength nanometer scale structures represents an important element of optical metrology. Current, well-established optical methods used to identify defects in semiconductor patterning are in jeopardy by upcoming sub-20 nm device dimensions. A novel volumetric analysis for processing focus-resolved images of defects is presented using simulated and experimental examples. This new method allows defects as narrow as (16 ± 2) nm (k = 1) to be revealed using 193 nm light with focus and illumination conditions optimized for three-dimensional data analysis. Quantitative metrics to compare two-dimensional and three-dimensional imaging indicate possible fourfold improvements in sensitivity using these methods.

© 2013 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(150.3040) Machine vision : Industrial inspection
(150.1835) Machine vision : Defect understanding
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Image Processing

History
Original Manuscript: July 31, 2013
Revised Manuscript: October 18, 2013
Manuscript Accepted: October 19, 2013
Published: October 25, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Bryan M. Barnes, Martin Y. Sohn, Francois Goasmat, Hui Zhou, András E. Vladár, Richard M. Silver, and Abraham Arceo, "Three-dimensional deep sub-wavelength defect detection using λ = 193 nm optical microscopy," Opt. Express 21, 26219-26226 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995). [CrossRef]
  2. J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt.52(26), 6512–6522 (2013). [CrossRef] [PubMed]
  3. T. F. Crimmins, “Defect metrology challenges at the 11nm node and beyond,” Proc. SPIE7638, 76380H, 76380H-12 (2010). [CrossRef]
  4. T. F. Crimmins, “Wafer noise models for defect inspection,” Proc. SPIE7971, 79710E, 79710E-6 (2011). [CrossRef]
  5. R. M. Silver, B. M. Barnes, R. Attota, J. S. Jun, M. T. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending the limits of image-based optical metrology,” Appl. Opt.46(20), 4248–4257 (2007). [CrossRef] [PubMed]
  6. B. M. Barnes, Y. J. Sohn, F. Goasmat, H. Zhou, R. M. Silver, and A. Arceo, “Scatterfield microscopy of 22 nm node patterned defects using visible and DUV light,” Proc. SPIE8324, 83240F, 83240F-11 (2012). [CrossRef]
  7. V. Tympel, M. Schaaf, and B. Srocka, “3D defect detection using optical wide-field microscopy,” Proc. SPIE6616, 66161D, 66161D-7 (2007). [CrossRef]
  8. K. H. Kim, J. G. Jo, M. C. Park, B. K. Ju, S. Cho, and J. Y. Son, “Coherent scattering stereoscopic microscopy for mask inspection of extreme ultra-violet lithography,” Proc. SPIE8738, 87380Z, 87380Z-6 (2013). [CrossRef]
  9. R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy,” Nano Lett.13(8), 3716–3721 (2013). [CrossRef] [PubMed]
  10. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat.EMC-22(3), 191–202 (1980). [CrossRef]
  11. Y. J. Sohn, R. Quintanilha, B. M. Barnes, and R. M. Silver, “193 nm angle-resolved scatterfield microscope for semiconductor metrology,” Proc. SPIE7405, 74050R, 74050R-8 (2009). [CrossRef]
  12. G. D. Evangelidis and E. Z. Psarakis, “Parametric image alignment using enhanced correlation coefficient maximization,” IEEE Trans. Pattern Anal. Mach. Intell.30(10), 1858–1865 (2008). [CrossRef] [PubMed]
  13. J. B. Poline, K. J. Worsley, A. C. Evans, and K. J. Friston, “Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging,” Neuroimage5(2), 83–96 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited