OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26244–26260

Three-dimensional multi-photon direct laser writing with variable repetition rate

Joachim Fischer, Jonathan B. Mueller, Johannes Kaschke, Thomas J. A. Wolf, Andreas-Neil Unterreiner, and Martin Wegener  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26244-26260 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We perform multi-photon direct laser writing as a function of laser repetition rate over many orders of magnitude and otherwise unchanged experimental conditions. These new data serve as basis for investigating the influence of different proposed mechanisms involved in the photopolymerization: two-photon absorption, photoionization, avalanche ionization and heat accumulation. We find different non-linearities for high and low repetition rates consistent with different initiation processes being involved. The scaling of the resulting linewidths, however, is neither expected nor found to depend on repetition rate or non-linearity.

© 2013 OSA

OCIS Codes
(350.3390) Other areas of optics : Laser materials processing
(350.3450) Other areas of optics : Laser-induced chemistry
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Laser Microfabrication

Original Manuscript: August 6, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 15, 2013
Published: October 25, 2013

Joachim Fischer, Jonathan B. Mueller, Johannes Kaschke, Thomas J. A. Wolf, Andreas-Neil Unterreiner, and Martin Wegener, "Three-dimensional multi-photon direct laser writing with variable repetition rate," Opt. Express 21, 26244-26260 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74, 786–788 (1999). [CrossRef]
  2. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412, 697–698 (2001). [CrossRef] [PubMed]
  3. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett.27, 1824–1826 (2002). [CrossRef]
  4. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater.3, 444–447 (2004). [CrossRef]
  5. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89, 024106–024106 (2006). [CrossRef]
  6. J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90, 131106–131106 (2007). [CrossRef]
  7. S. H. Park, T. W. Lim, D.-Y. Yang, R. H. Kim, and K.-S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res.14, 559–564 (2006). [CrossRef]
  8. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010). [CrossRef] [PubMed]
  9. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011). [CrossRef] [PubMed]
  10. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express1, 614–624 (2011). [CrossRef]
  11. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev.7, 22–44 (2013). [CrossRef]
  12. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19, 780–782 (1994). [CrossRef] [PubMed]
  13. H.-B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol.21, 624 (2003). [CrossRef]
  14. T. Baldacchini, S. Snider, and R. Zadoyan, “Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses,” Opt. Express20, 29890–29899 (2012). [CrossRef]
  15. J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett.103, 123107 (2013). [CrossRef]
  16. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13, 4708–4716 (2005). [CrossRef] [PubMed]
  17. M. Emons, K. Obata, T. Binhammer, A. Ovsianikov, B. N. Chichkov, and U. Morgner, “Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses,” Opt. Mater. Express2, 942–947 (2012). [CrossRef]
  18. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep., doi:(2013). [CrossRef]
  19. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010). [CrossRef]
  20. C. Decker and K. Moussa, “Real-time kinetic study of laser-induced polymerization,” Macromolecules22, 4455–4462 (1989). [CrossRef]
  21. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater.22, 3578–3582 (2010). [CrossRef] [PubMed]
  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, “Gaussian 09 Revision A.2,” Gaussian Inc. Wallingford CT2009.
  23. F. Weigend, F. Furche, and R. Ahlrichs, “Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr,” J. Chem. Phys.119, 12753 (2003). [CrossRef]
  24. O. F. Olaj, I. Bitai, and F. Hinkelmann, “The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization, 2. the direct determination of the rate of constant of chain propagation,” Macromol. Chem. Phys.188, 1689–1702 (1987). [CrossRef]
  25. J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nano lithography,” Adv. Materials24, OP65–OP69 (2012). [CrossRef]
  26. K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A162, 497–502 (2004). [CrossRef]
  27. M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, “Two-photon absorption and the design of two-photon dyes,” Angew. Chem. Int. Ed.48, 3244–3266 (2009). [CrossRef]
  28. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16, 846 (2005). [CrossRef]
  29. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90, 071106–071106 (2007). [CrossRef]
  30. A. Pikulin and N. Bityurin, “Spatial confinement of percolation: Monte Carlo modeling and nanoscale laser polymerization,” Phys. Rev. B82, 085406 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited