OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26323–26334

Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses

Go Obara, Hisashi Shimizu, Taira Enami, Eric Mazur, Mitsuhiro Terakawa, and Minoru Obara  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26323-26334 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5801 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present experimentally and theoretically the evolution of high spatial frequency periodic ripples (HSFL) fabricated on SiC crystal surfaces by irradiation with femtosecond laser pulses in a vacuum chamber. At early stages the seed defects are mainly induced by laser pulse irradiation, leading to the reduction in the ablation threshold fluence. By observing the evolution of these surface structures under illumination with successive laser pulses, the nanocraters are made by nanoablation at defects in the SiC surface. The Mie scattering by the nanoablated craters grows the periodic ripples. The number of HSFL is enhanced with increasing pulse number. At the edge of the laser spot the Mie scattering process is still dominant, causing the fabrication of HSFL. On the periphery of the spot SiC substrate remains a semiconductor state because the electron density in the SiC induced by laser irradiation is kept low. The HSFL observed is very deep in the SiC surface by irradiating with many laser pulses. These experimental results are well explained by 3D FDTD (three-dimensional finite-difference time-domain) simulation.

© 2013 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(350.3390) Other areas of optics : Laser materials processing
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Laser Microfabrication

Original Manuscript: August 26, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 15, 2013
Published: October 25, 2013

Go Obara, Hisashi Shimizu, Taira Enami, Eric Mazur, Mitsuhiro Terakawa, and Minoru Obara, "Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses," Opt. Express 21, 26323-26334 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature386(6621), 143–149 (1997). [CrossRef]
  3. J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater.1(1), 59–63 (2002). [CrossRef] [PubMed]
  4. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965). [CrossRef]
  5. J. E. Sipe, J. F. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983). [CrossRef]
  6. J. F. Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983). [CrossRef]
  7. J. F. Young, J. E. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B30(4), 2001–2015 (1984). [CrossRef]
  8. M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron.1(3), 841–847 (1995). [CrossRef]
  9. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009). [CrossRef]
  10. N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett.24(2), 143–149 (2006). [CrossRef]
  11. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009). [CrossRef]
  12. X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials29(13), 2049–2059 (2008). [CrossRef] [PubMed]
  13. Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009). [CrossRef] [PubMed]
  14. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010). [CrossRef] [PubMed]
  15. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009). [CrossRef] [PubMed]
  16. E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir25(3), 1790–1794 (2009). [CrossRef] [PubMed]
  17. A. Hamdorf, M. Olson, C.-H. Lin, L. Jiang, J. Zhou, H. Xiao, and H.-L. Tsai, “Femtosecond and nanosecond laser fabricated substrate for surface-enhanced Raman scattering,” Opt. Lett.36(17), 3353–3355 (2011). [CrossRef] [PubMed]
  18. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser induced periodic surface structures upon irradiation of silicon by femtosecond laser pulse,” J. Appl. Phys.106(10), 104910 (2009). [CrossRef]
  19. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  20. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express16(20), 16265–16271 (2008). [CrossRef] [PubMed]
  21. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011). [CrossRef] [PubMed]
  22. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009). [CrossRef]
  23. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009). [CrossRef]
  24. S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasi periodic nanostructures on TiO2 surfaces,” J. Appl. Phys.105(8), 084912 (2009). [CrossRef]
  25. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett.36(2), 229–231 (2011). [CrossRef] [PubMed]
  26. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33(22), 2713–2715 (2008). [CrossRef] [PubMed]
  27. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of Nanograting formation on the surface of fused silica,” Opt. Express20(4), 4389–4396 (2012). [CrossRef] [PubMed]
  28. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006). [CrossRef] [PubMed]
  29. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  30. E. M. Hsu, T. H. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett.92(22), 221112 (2008). [CrossRef]
  31. S. H. Kim, I. B. Sohn, and S. Jeong, “Fabrication of uniform nanogrooves on 6H-SiC by femtosecond laser ablation,” Appl. Phys., A Mater. Sci. Process.102(1), 55–59 (2011). [CrossRef]
  32. M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, and S. Hashimoto, “Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC,” Appl. Phys., A Mater. Sci. Process.99(1), 23–27 (2010). [CrossRef]
  33. A. V. Emelyanov, A. G. Kazanskii, P. K. Kashkarov, O. I. Konkov, E. I. Terukov, P. A. Forsh, M. V. Khenkin, A. V. Kukin, M. Beresna, and P. Kazansky, “Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties,” Semiconductors46(6), 749–754 (2012). [CrossRef]
  34. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process.74(1), 19–25 (2002). [CrossRef]
  35. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett.90(15), 153115 (2007). [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  37. N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzén, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Appl. Phys. Lett.66(9), 1074–1076 (1995). [CrossRef]
  38. S.-H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser,” Opt. Commun.168(1-4), 287–295 (1999). [CrossRef]
  39. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12(4), 661–664 (1973). [CrossRef] [PubMed]
  40. L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23(11), 607–609 (1973). [CrossRef]
  41. S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 883–884 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited