OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26418–26431

Numerical study of the properties of optical vortex array laser tweezers

Chun-Fu Kuo and Shu-Chun Chu  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26418-26431 (2013)
http://dx.doi.org/10.1364/OE.21.026418


View Full Text Article

Enhanced HTML    Acrobat PDF (4816 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IGep,p modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

© 2013 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: July 17, 2013
Revised Manuscript: October 21, 2013
Manuscript Accepted: October 21, 2013
Published: October 28, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Chun-Fu Kuo and Shu-Chun Chu, "Numerical study of the properties of optical vortex array laser tweezers," Opt. Express 21, 26418-26431 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26418


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radia-tion pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radia-tion pressure,” Appl. Phys. Lett.19(8), 283–285 (1971). [CrossRef]
  3. A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt.19(5), 660–668 (1980). [CrossRef] [PubMed]
  4. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  5. K. Dholakia and P. Zemánek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010). [CrossRef]
  6. Y. Liu and M. Yu, “Multiple traps created with an inclined dual-fiber system,” Opt. Express17(24), 21680–21690 (2009). [CrossRef] [PubMed]
  7. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett.21(11), 827–829 (1996). [CrossRef] [PubMed]
  8. D. W. Zhang and X.-C. Yuan, “Optical doughnut for optical tweezers,” Opt. Lett.28(9), 740–742 (2003). [CrossRef] [PubMed]
  9. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001). [CrossRef] [PubMed]
  10. Y. Song, D. Milam, and W. T. Hill Iii, “Long, narrow all-light atom guide,” Opt. Lett.24(24), 1805–1807 (1999). [CrossRef] [PubMed]
  11. X. Xu, K. Kim, W. Jhe, and N. Kwon, “Efficient optical guiding of trapped cold atoms by a hollow laser beam,” Phys. Rev. A63(6), 063401 (2001). [CrossRef]
  12. J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun.198(1-3), 21–27 (2001). [CrossRef]
  13. S.-C. Chu, C.-S. Yang, and K. Otsuka, “Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer,” Opt. Express16(24), 19934–19949 (2008). [CrossRef] [PubMed]
  14. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11(4), 1491–1499 (1994). [CrossRef]
  15. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J.333, 848–872 (1988). [CrossRef]
  16. A. G. Hoekstra, M. Frijlink, L. B. Waters, and P. M. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A18(8), 1944–1953 (2001). [CrossRef] [PubMed]
  17. L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108(7), 073110 (2010). [CrossRef]
  18. R. Schmehl, B. M. Nebeker, and E. D. Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” J. Opt. Soc. Am. A14(11), 3026–3036 (1997). [CrossRef]
  19. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett.16(15), 1198–1200 (1991). [CrossRef] [PubMed]
  20. B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J.405, 685–697 (1993). [CrossRef]
  21. B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains. I. superthermal spin-up,” Astrophys. J.470, 551–565 (1996). [CrossRef]
  22. M. A. Bandres, “Elegant Ince-Gaussian beams,” Opt. Lett.29(15), 1724–1726 (2004). [CrossRef] [PubMed]
  23. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian modes of the paraxial wave equation and stable resonators,” J. Opt. Soc. Am. A21(5), 873–880 (2004). [CrossRef] [PubMed]
  24. The Language of Technical Computing, http://www.mathworks.com/ .
  25. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).
  26. M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge, 1999).
  27. R.-J. Yang, C.-C. Chang, S.-B. Huang, and G.-B. Lee, “A new focusing model and switching approach for electrokinetic flow inside microchannels,” J. Micromech. Microeng.15(11), 2141–2148 (2005). [CrossRef]
  28. B. Ma, B. Yao, F. Peng, S. Yan, M. Lei, and R. Rupp, “Optical sorting of particles by dual-channel line optical tweezers,” J. Opt.14(10), 105702 (2012). [CrossRef]
  29. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nat. Biotechnol.23(1), 83–87 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited