OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26468–26474

Pulsed laser deposition of hexagonal GaN-on-Si(100) template for MOCVD applications

Kun-Ching Shen, Ming-Chien Jiang, Hong-Ru Liu, Hsu-Hung Hsueh, Yu-Cheng Kao, Ray-Hua Horng, and Dong-Sing Wuu  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26468-26474 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1848 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Growth of hexagonal GaN on Si(100) templates via pulsed laser deposition (PLD) was investigated for the further development of GaN-on-Si technology. The evolution of the GaN growth mechanism at various growth times was monitored by SEM and TEM, which indicated that the GaN growth mode changes gradually from island growth to layer growth as the growth time increases up to 2 hours. Moreover, the high-temperature operation (1000°C) of the PLD meant no significant GaN meltback occurred on the GaN template surface. The completed GaN templates were subjected to MOCVD treatment to regrow a GaN layer. The results of X-ray diffraction analysis and photoluminescence measurements show not only the reliability of the GaN template, but also the promise of the PLD technique for the development of GaN-on-Si technology.

© 2013 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.6000) Materials : Semiconductor materials

ToC Category:

Original Manuscript: July 30, 2013
Revised Manuscript: October 6, 2013
Manuscript Accepted: October 21, 2013
Published: October 28, 2013

Kun-Ching Shen, Ming-Chien Jiang, Hong-Ru Liu, Hsu-Hung Hsueh, Yu-Cheng Kao, Ray-Hua Horng, and Dong-Sing Wuu, "Pulsed laser deposition of hexagonal GaN-on-Si(100) template for MOCVD applications," Opt. Express 21, 26468-26474 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth285(3), 312–317 (2005). [CrossRef]
  2. J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett.99(11), 111112 (2011). [CrossRef]
  3. A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth297(2), 279–282 (2006). [CrossRef]
  4. S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012). [CrossRef]
  5. K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.97(23), 232107 (2010). [CrossRef]
  6. W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009). [CrossRef]
  7. A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993). [CrossRef]
  8. K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007). [CrossRef]
  9. Y. Nakada, I. Aksenov, and H. Okumura, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si(111) surfaces by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.73(6), 827–829 (1998). [CrossRef]
  10. D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010). [CrossRef]
  11. J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010). [CrossRef]
  12. K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013). [CrossRef]
  13. R. H. Horng, K. C. Shen, Y. W. Kuo, and D. S. Wuu, “GaN light emitting diodes with wing-type imbedded contacts,” Opt. Express21(S1Suppl 1), A1–A6 (2013). [CrossRef] [PubMed]
  14. C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007). [CrossRef]
  15. T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013). [CrossRef]
  16. N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010). [CrossRef]
  17. K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target,” Opt. Express20(14), 15149–15156 (2012). [CrossRef] [PubMed]
  18. K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High thermal stability of high indium content InGaN films grown by pulsed laser deposition,” Opt. Express20(19), 21173–21180 (2012). [CrossRef] [PubMed]
  19. J. Narayan, P. Pant, W. Wei, R. J. Narayan, and J. D. Budai, “Nanostructured GaN Nucleation Layer for Light-Emitting Diodes,” J. Nanosci. Nanotechnol.7(8), 2719–2725 (2007). [CrossRef] [PubMed]
  20. B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, “Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.83(7), 3800–3806 (1998). [CrossRef]
  21. T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, and S. B. Krupanidhi, “Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si(100) heterojunctions grown by molecular beam epitaxy,” J. Appl. Phys.110(9), 093718 (2011). [CrossRef]
  22. K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc.158(10), H988–H993 (2011). [CrossRef]
  23. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A21(5), S117–S128 (2003). [CrossRef]
  24. Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C 2(7), 2225–2178 (2005).
  25. H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998). [CrossRef]
  26. O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett.71(18), 2638–2640 (1997). [CrossRef]
  27. Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).
  28. M. Hao, H. Ishikawa, and T. Egawa, “Formation chemistry of high density nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates,” Appl. Phys. Lett.84(20), 4041–4043 (2004). [CrossRef]
  29. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999). [CrossRef]
  30. T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B Condens. Matter46(23), 15578–15581 (1992). [CrossRef] [PubMed]
  31. A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev.56(10), 978–982 (1939). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited