OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26493–26505

Degeneration of Fraunhofer diffraction on bacterial colonies due to their light focusing properties examined in the digital holographic microscope system

Igor Buzalewicz, Kamil Liżewski, Małgorzata Kujawińska, and Halina Podbielska  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26493-26505 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The degeneration of Fraunhofer diffraction conditions in the optical system with converging spherical wave illumination for bacteria species identification based on diffraction patterns is analyzed by digital holographic methods. The obtained results have shown that the colonies of analyzed bacteria species act as biological lenses with the time-dependent light focusing properties, which are characterized and monitored by means of phase retrieval from sequentially captured digital holograms. This significantly affects the location of Fraunhofer patterns observation plane, which is continuously shifted across optical axis in time.

© 2013 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(090.1995) Holography : Digital holography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 2, 2013
Revised Manuscript: September 16, 2013
Manuscript Accepted: October 17, 2013
Published: October 28, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Igor Buzalewicz, Kamil Liżewski, Małgorzata Kujawińska, and Halina Podbielska, "Degeneration of Fraunhofer diffraction on bacterial colonies due to their light focusing properties examined in the digital holographic microscope system," Opt. Express 21, 26493-26505 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. G. B. Amyes, “The rise in bacterial resistance,” BMJ320(7229), 199–200 (2000). [CrossRef] [PubMed]
  2. S. B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nat. Med.10(12Suppl), S122–S129 (2004). [CrossRef] [PubMed]
  3. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999). [CrossRef]
  4. S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001). [CrossRef] [PubMed]
  5. A. Maninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamӓki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross-sections from airborne microsized particle,” Appl. Opt.47(7), 110–115 (2008).
  6. A. Alimova, A. Katz, P. Gottlieb, and R. R. Alfano, “Proteins and dipicolinic acid released during heat shock activation of Bacillus subtilis spores probed by optical spectroscopy,” Appl. Opt.45(3), 445–450 (2006). [CrossRef] [PubMed]
  7. J. Thomason, “Spectroscopy takes security into the field,” Photon. Spectra38, 83–85 (2004).
  8. R. T. Noble and S. B. Weisberg, “A review of technologies for rapid detection of bacteria in recreational waters,” J. Water Health3(4), 381–392 (2005). [PubMed]
  9. D. L. Rosen, “Airborne bacterial endospores detected by use of an impinger containing aqueous terbium chloride,” Appl. Opt.45(13), 3152–3157 (2006). [CrossRef] [PubMed]
  10. S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006). [CrossRef] [PubMed]
  11. J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002). [CrossRef] [PubMed]
  12. J. C. Auger, K. B. Aptowicz, R. G. Pinnick, Y.-L. Pan, and R. K. Chang, “Angularly resolved light scattering from aerosolized spores: Observations and calculations,” Opt. Lett.32(22), 3358–3360 (2007). [CrossRef] [PubMed]
  13. P. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt.46(17), 3639–3648 (2007).
  14. M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt.47(5), 678–686 (2008). [CrossRef] [PubMed]
  15. P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007). [CrossRef] [PubMed]
  16. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008). [CrossRef] [PubMed]
  17. P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009). [CrossRef] [PubMed]
  18. E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010). [CrossRef] [PubMed]
  19. E. Bae, A. Aroonnual, A. K. Bhunia, and E. D. Hirleman, “On the sensitivity of forward scattering patterns from bacterial colonies to media composition,” J Biophotonics4(4), 236–243 (2011). [CrossRef] [PubMed]
  20. I. Buzalewicz, K. Wysocka, and H. Podbielska, “„Exploiting of optical transforms for bacteria evaluation in vitro,” Proc. SPIE7371, 73711H, 73711H-6 (2009). [CrossRef]
  21. I. Buzalewicz, K. Wysocka-Król, and H. Podbielska, “Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms,” Opt. Express18(12), 12992–13005 (2010). [CrossRef] [PubMed]
  22. I. Buzalewicz, K. Wysocka–Król, K. Kowal, and H. Podbielska, “Evaluation of antibacterial agents efficiency” in Information Technologies in Biomedicine 2, E. Pietka, J. Kawa ed. (Springer-Verlag, Berlin, 2010).
  23. I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination,” Opt. Express19(22), 21768–21785 (2011). [CrossRef] [PubMed]
  24. A. Suchwalko, I. Buzalewicz, and H. Podbielska, “Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns,” Proc. SPIE82120R, 82120R-13 (2012). [CrossRef]
  25. H. Podbielska, I. Buzalewicz, and A. Suchwalko, “Bacteria Classification by Means of the Statistical Analysis of Fresnel Diffraction Patterns of Bacteria Colonies,” Biomedical Optics (BIOMED) (2012).
  26. A. Suchwałko, I. Buzalewicz, and H. Podbielska, “Identification of bacteria species by using morphological and textural properties of bacterial colonies diffraction patterns,” Proc. SPIE8791, 8791 (2013).
  27. A. Suchwałko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express21(9), 11322–11337 (2013). [CrossRef] [PubMed]
  28. J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” -,” Opt. Commun.297, 20–26 (2013). [CrossRef]
  29. T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol.49, 38–46 (2013). [CrossRef]
  30. K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on superresolution concept,” Opt. Lett.38(11), 1878–1880 (2013). [CrossRef] [PubMed]
  31. K. Liżewski, T. Kozacki, M. Józwik, and J. Kostencka, “On topography characterization of micro-optical elements with large numerical aperture using digital holographic microscopy,” Proc. SPIE8430, 8430 (2012).
  32. T. Kozacki, M. Józwik, and K. Liżewski, “High-numerical-aperture microlens shape measurement with digital holographic microscopy,” Opt. Lett.36(22), 4419–4421 (2011). [CrossRef] [PubMed]
  33. T. Kozacki, M. Józwik, and R. Jóźwicki, ““Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev.17, 58–63 (2009).
  34. J. W. Goodman, Introduction to Fourier Optics, Third edition, (Robert & Company Publishers, 2005).
  35. J. D. Gaskill, Linear systems, Fourier transform and optics, (John Wiley & Sons, New York, 1978).
  36. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  37. A. B. Forbes, A.B. 1989, “Least-Squares Best-Fit Geometric Elements,” National Physical Laboratory Report DITC 140/89 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited