OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26506–26512

Cr:ZnS saturable absorber passively Q-switched Tm,Ho:GdVO4 laser

Yanqiu Du, Baoquan Yao, Xiaoming Duan, Zheng Cui, Yu Ding, Youlun Ju, and Zuochun Shen  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26506-26512 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1061 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A passively Q-switched Tm,Ho:GdVO4 laser operating at cryogenic temperature with a Cr2+:ZnS saturable absorber pumped with continuous wave LDs was demonstrated. The performance of the laser was investigated through changing the distance between Cr2+:ZnS and output coupler. The maximum pulse energy of 70.5 μJ was obtained at 10 W input power. The maximum average output power of PQS laser was up to 3.2 W at the pump power of 22.8 W, corresponding to CW output power of 7.4 W, pulse repetition frequency of 52 kHz, and a pulse width of 389 ns. The M2 factor measured by the traveling knife-edge method was ~1.1 in x and y directions with near-diffraction limited beam quality.

© 2013 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 7, 2013
Revised Manuscript: October 5, 2013
Manuscript Accepted: October 8, 2013
Published: October 28, 2013

Yanqiu Du, Baoquan Yao, Xiaoming Duan, Zheng Cui, Yu Ding, Youlun Ju, and Zuochun Shen, "Cr:ZnS saturable absorber passively Q-switched Tm,Ho:GdVO4 laser," Opt. Express 21, 26506-26512 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett.16(10), 773–775 (1991). [CrossRef] [PubMed]
  2. K. Scholle, E. Heumann, and G. Huber, “Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications,” Laser Phys. Lett.1(6), 285–290 (2004). [CrossRef]
  3. H. Iwai, S. Ishii, R. Oda, K. Mizutani, S. Sekizawa, and Y. Murayama, “Performance and technique of coherent 2-μm differential absorption and wind lidar for wind measurement,” J. Atmos. Ocean. Technol.30(3), 429–449 (2013). [CrossRef]
  4. N. S. Nishioka and Y. Domankevitz, “Comparison of tissue ablation with pulsed holmium and thulium lasers,” IEEE J. Quantum Electron.26(12), 2271–2275 (1990). [CrossRef]
  5. B. Q. Yao, G. Li, G. L. Zhu, P. B. Meng, Y. L. Ju, and Y. Z. Wang, “Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators,” Chin. Phys. B21(3), 0342131–0342136 (2012). [CrossRef]
  6. L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kuck, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett.81(16), 2926–2928 (2002). [CrossRef]
  7. M. Gaponenko, A. Onushchenko, V. Kisel, A. Malyarevich, K. Yumashev, and N. V. Kuleshov, “Compact passively Q-switched diode-pumped Tm:KY(WO4)2 laser with 8 ns/30μJ pulses,” Laser Phys. Lett.9(4), 291–294 (2012). [CrossRef]
  8. B. Q. Yao, Y. Tian, G. Li, and Y. Z. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express18(13), 13574–13579 (2010). [CrossRef] [PubMed]
  9. Z. S. Qu, Y. G. Wang, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Performance of 2 μm Tm:YAP pulse laser based on a carbon nanotube absorber,” Appl. Phys. B109(1), 143–147 (2012). [CrossRef]
  10. H. H. Yu, V. Petrov, U. Griebner, D. Parisi, S. Veronesi, and M. Tonelli, “Compact passively Q-switched diode-pumped Tm:LiLuF4 laser with 1.26 mJ output energy,” Opt. Lett.37(13), 2544–2546 (2012). [CrossRef] [PubMed]
  11. R. Faoro, M. Kadankov, D. Parisi, S. Veronesi, M. Tonelli, V. Petrov, U. Griebner, M. Segura, and X. Mateos, “Passively Q-switched Tm:YLF laser,” Opt. Lett.37(9), 1517–1519 (2012). [CrossRef] [PubMed]
  12. A. M. Malyarevich, P. V. Prokoshin, M. I. Demchuk, K. V. Yumashev, and A. A. Lipovskii, “Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass,” Appl. Phys. Lett.78(5), 572–573 (2001). [CrossRef]
  13. X. L. Zhang, X. J. Bao, L. Li, H. Li, and J. H. Cui, “Laser diode end-pumped passively Q-switched Tm,Ho:YLF laser with Cr:ZnS as a saturable absorber,” Opt. Commun.285(8), 2122–2127 (2012). [CrossRef]
  14. X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, and J. H. Cui, “Diode-pumped continuous wave and passively Q-switched Tm,Ho:LLF laser at 2 µm,” Opt. Express21(10), 12629–12634 (2013). [CrossRef] [PubMed]
  15. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992). [CrossRef]
  16. B. Q. Yao, W. J. He, Y. Z. Wang, X. B. Zhang, and Y. F. Li, “High efficiency continuous-wave Tm:Ho:GdVO4 laser pumped by a diode,” Chin. Phys. Lett.21(11), 2182–2183 (2004). [CrossRef]
  17. W. J. He, B. Q. Yao, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient Tm,Ho:GdVO4 laser with near-diffraction limited beam quality,” Opt. Express14(24), 11653–11659 (2006). [CrossRef] [PubMed]
  18. D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett.91(10), 107601 (2003). [CrossRef] [PubMed]
  19. E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express20(27), 28947–28952 (2012). [CrossRef] [PubMed]
  20. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010). [CrossRef]
  21. L. J. Li, B. Q. Yao, C. T. Wu, Y. L. Ju, Y. J. Zhang, and Y. Z. Wang, “Thermal focal length measurement of an LD-end-pumped Tm,Ho:GdVO4 laser,” Laser Phys.19(6), 1213–1215 (2009). [CrossRef]
  22. B. Q. Yao, G. Li, P. B. Meng, G. L. Zhu, Y. L. Ju, and Y. Z. Wang, “High power diode-pumped continuous wave and Q-switch operation of Tm,Ho:YVO4 laser,” Laser Phys. Lett.7(12), 857–861 (2010). [CrossRef]
  23. N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Linear thermal expansion and thermo-optic coefficients of YVO4 crystals the 80-320 K temperature range,” Opt. Mater. Express2(11), 1624–1631 (2012). [CrossRef]
  24. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quant.13(3), 448–459 (2007). [CrossRef]
  25. M. Kovalsky and A. Hnilo, “Chaos in the pulse spacing of passive Q-switched all-solid-state lasers,” Opt. Lett.35(20), 3498–3500 (2010). [CrossRef] [PubMed]
  26. D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng, “Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett.28(5), 325–327 (2003). [CrossRef] [PubMed]
  27. J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Passively Q-switched Yb:Y2O3 ceramic laser with a GaAs output coupler,” Opt. Express12(15), 3560–3566 (2004). [CrossRef] [PubMed]
  28. S. J. Shu, T. Yu, J. Y. Hou, R. T. Liu, M. J. Huang, and W. B. Chen, “End-pumped all solid-state high repetition rate Tm,Ho:LuLF laser,” Chin. Opt. Lett.9(2), 021401 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited