OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26564–26577

Wave front adaptation using a deformable mirror for adiabatic nanofocusing along an ultrasharp gold taper

Slawa Schmidt, Pascal Engelke, Björn Piglosiewicz, Martin Esmann, Simon F. Becker, Kyungwan Yoo, Namkyoo Park, Christoph Lienau, and Petra Groß  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26564-26577 (2013)
http://dx.doi.org/10.1364/OE.21.026564


View Full Text Article

Enhanced HTML    Acrobat PDF (5793 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.

© 2013 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(180.4243) Microscopy : Near-field microscopy
(260.7120) Physical optics : Ultrafast phenomena
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Plasmonics

History
Original Manuscript: September 3, 2013
Revised Manuscript: October 16, 2013
Manuscript Accepted: October 17, 2013
Published: October 28, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Citation
Slawa Schmidt, Pascal Engelke, Björn Piglosiewicz, Martin Esmann, Simon F. Becker, Kyungwan Yoo, Namkyoo Park, Christoph Lienau, and Petra Groß, "Wave front adaptation using a deformable mirror for adiabatic nanofocusing along an ultrasharp gold taper," Opt. Express 21, 26564-26577 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  2. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000). [CrossRef]
  3. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  4. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007). [CrossRef] [PubMed]
  5. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102(20), 203904 (2009). [CrossRef] [PubMed]
  6. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007). [CrossRef] [PubMed]
  7. D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles,” Nano Lett.11(4), 1609–1613 (2011). [CrossRef] [PubMed]
  8. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-Field Localization in Plasmonic Superfocusing: A Nanoemitter on a Tip,” Nano Lett.10(2), 592–596 (2010). [CrossRef] [PubMed]
  9. S. Schmidt, B. Piglosiewicz, D. Sadiq, J. Shirdel, J. S. Lee, P. Vasa, N. Park, D.-S. Kim, and C. Lienau, “Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution,” ACS Nano6(7), 6040–6048 (2012). [CrossRef] [PubMed]
  10. S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic tip-plasmon focusing for nano-raman spectroscopy,” J. Phys. Chem. Lett.1(24), 3427–3432 (2010). [CrossRef]
  11. V. Kravtsov, J. M. Atkin, and M. B. Raschke, “Group delay and dispersion in adiabatic plasmonic nanofocusing,” Opt. Lett.38(8), 1322–1324 (2013). [CrossRef] [PubMed]
  12. S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011). [CrossRef] [PubMed]
  13. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005). [CrossRef] [PubMed]
  14. M. Esmann, S. F. Becker, B. B. da Cunha, J. H. Brauer, R. Vogelgesang, P. Gross, and C. Lienau, “k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy,” Beilstein J. Nantechnol.4, 603–610 (2013). [CrossRef]
  15. G. R. Lemaitre, “Optical design and active optics methods in astronomy,” Opt. Rev.20(2), 103–117 (2013). [CrossRef]
  16. R. Davies and M. Kasper, “Adaptive Optics for Astronomy,” in Annual Review of Astronomy and Astrophysics, Vol 50, S. M. Faber and E. VanDishoeck, eds. (2012), pp. 305–351.
  17. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express16(15), 10943–10955 (2008). [CrossRef] [PubMed]
  18. S. S. Niu, J. X. Shen, C. Liang, Y. H. Zhang, and B. M. Li, “High-resolution retinal imaging with micro adaptive optics system,” Appl. Opt.50(22), 4365–4375 (2011). [CrossRef] [PubMed]
  19. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007). [CrossRef] [PubMed]
  20. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  21. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2(1), 31–37 (2007). [CrossRef]
  22. J. S. Lee, S. Han, J. Shirdel, S. Koo, D. Sadiq, C. Lienau, and N. Park, “Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method,” Opt. Express19(13), 12342–12347 (2011). [CrossRef] [PubMed]
  23. G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B83(4), 511–519 (2006). [CrossRef]
  24. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express13(7), 2617–2626 (2005). [CrossRef] [PubMed]
  25. I. Amat-Roldán, I. Cormack, P. Loza-Alvarez, E. Gualda, and D. Artigas, “Ultrashort pulse characterisation with SHG collinear-FROG,” Opt. Express12(6), 1169–1178 (2004). [CrossRef] [PubMed]
  26. B. Piglosiewicz, D. Sadiq, M. Mascheck, S. Schmidt, M. Silies, P. Vasa, and C. Lienau, “Ultrasmall bullets of light--focusing few-cycle light pulses to the diffraction limit,” Opt. Express19(15), 14451–14463 (2011). [CrossRef] [PubMed]
  27. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction Of Light, 7, (expanded) ed., reprinted with corr., 6. print. ed. (Cambridge Univ. Press, 2010), pp. XXXIII, 952 S.
  28. S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt.49(31), G37–G46 (2010). [CrossRef]
  29. J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wyant, eds. (1992), pp. 1–53.
  30. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997). [CrossRef]
  31. S. Takahashi and A. V. Zayats, “Near-field second-harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002). [CrossRef]
  32. T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett.90(21), 217404 (2003). [CrossRef] [PubMed]
  33. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012). [CrossRef] [PubMed]
  34. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012). [CrossRef]
  35. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Optical control of plasmonic bloch modes on periodic nanostructures,” Nano Lett.12(2), 546–550 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited