OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27438–27451

Plasmonic metasurfaces for efficient phase control in reflection

Anders Pors and Sergey I. Bozhevolnyi  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27438-27451 (2013)
http://dx.doi.org/10.1364/OE.21.027438


View Full Text Article

Enhanced HTML    Acrobat PDF (2435 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically study the optical properties of metal-insulator-metal resonators and metasurfaces, emphasizing the presence of gap-surface plasmon (GSP) resonances and their connection to the optical response. In relation to birefringent metal-backed metasurfaces, we show how a combination of metal nanobrick and nanocross elements allows one to fully control the phase of reflected light for two orthogonal polarizations simultaneously. The approach is exemplified by the design of a gradient birefringent metasurface that reflects two orthogonal polarization states into +2 and −3 diffraction order, respectively, with a reflectivity up to ∼ 80% and in a broad wavelength range around the design wavelength of 800 nm. Finally, we introduce the concept of metascatterers, which are wavelength-sized polarization-sensitive scatterers.

© 2013 OSA

OCIS Codes
(260.3910) Physical optics : Metal optics
(260.5430) Physical optics : Polarization
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: August 2, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: September 19, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Citation
Anders Pors and Sergey I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Opt. Express 21, 27438-27451 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005). [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006). [CrossRef] [PubMed]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  7. N. Engheta, A. Salandrino, and A. Alú, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett.95, 095504 (2005). [CrossRef] [PubMed]
  8. N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317, 1698–1702 (2007). [CrossRef] [PubMed]
  9. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11, 573–584 (2012). [CrossRef] [PubMed]
  10. Y. Zhao, N. Engheta, and A. Alú, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials5, 90–96 (2011). [CrossRef]
  11. A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011). [CrossRef] [PubMed]
  12. Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011). [CrossRef]
  13. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37, 1820–1822 (2012). [CrossRef] [PubMed]
  14. P.-C. Li, Y. Zhao, A. Alú, and E. T. Yua, “Experimental realization and modeling of a subwavelength frequency- selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011). [CrossRef]
  15. P.-C. Li and E. T. Yu, “Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment,” J. Opt. Soc. Am. B30, 27–32 (2013). [CrossRef]
  16. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for fresnel-region focusing,” Nano Lett.10, 1936–1940 (2010). [CrossRef] [PubMed]
  17. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011). [CrossRef] [PubMed]
  18. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427 (2012). [CrossRef]
  19. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antennas metasurfaces with phase discontinuities,” Nano Lett.12, 1702–1706 (2012). [CrossRef] [PubMed]
  20. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012). [CrossRef] [PubMed]
  21. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12, 6328–6333 (2012). [CrossRef] [PubMed]
  22. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun.3, 1198 (2012). [CrossRef] [PubMed]
  23. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, T. Zentgraf, and S. Zhang, “Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens,” Adv. Optical Mater.1, 517–521 (2013). [CrossRef]
  24. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light: Sci. Applications2, e70 (2013). [CrossRef]
  25. F. Monticone, N. M. Estakhri, and A. Alú, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013). [CrossRef]
  26. D. M. Pozar, S. D. Targonski, and H. D. Syrigos, “Design of millimeter wave microstrip reflectarrays,” IEEE Trans. Antennas Propag.45, 287–296 (1997). [CrossRef]
  27. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009). [CrossRef]
  28. A. Pors and S. I. Bozhevolnyi, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express21, 2942–2952 (2013). [CrossRef] [PubMed]
  29. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett.38, 513–515 (2013). [CrossRef] [PubMed]
  30. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett.12, 6223–6229 (2012). [CrossRef] [PubMed]
  31. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett.37, 4940–4942 (2012). [CrossRef] [PubMed]
  32. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett.13, 829–834 (2013). [CrossRef] [PubMed]
  33. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11, 426–431 (2012). [CrossRef] [PubMed]
  34. C. Qu, S. Xiao, S. Sun, Q. He, and L. Zhou, “A theoretical study on the conversion efficiencies of gradient meta-surfaces,” Europhys. Lett.101, 54002 (2013). [CrossRef]
  35. M. Farmahini-Farahani and H. Mosallaei, “Birefringent reflectarray metasurface for beam engineering in infrared,” Opt. Lett.38, 462–464 (2013). [CrossRef] [PubMed]
  36. A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap-plasmon-based metasurfaces for total control of reflected light,” Sci. Rep.3, 2155 (2013). [CrossRef]
  37. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96, 097401 (2006). [CrossRef] [PubMed]
  38. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15, 10869–10877 (2007). [CrossRef] [PubMed]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  40. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. Della Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys.10, 105008 (2008). [CrossRef]
  41. T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Stat. Sol. B245, 9–19 (2008). [CrossRef]
  42. H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express15, 1076–1083 (2007). [CrossRef] [PubMed]
  43. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express15, 3333–3341 (2007). [CrossRef] [PubMed]
  44. A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small3, 294–299 (2007). [CrossRef] [PubMed]
  45. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010). [CrossRef] [PubMed]
  46. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010). [CrossRef]
  47. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 1–7 (2011). [CrossRef]
  48. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express20, 13311–13319 (2012). [CrossRef] [PubMed]
  49. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012). [CrossRef]
  50. E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion,” Phys. Rev. B86, 245108 (2012). [CrossRef]
  51. G. Lévêque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett.31, 2750–2752 (2006). [CrossRef] [PubMed]
  52. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79, 035401 (2009). [CrossRef]
  53. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19, 19310–19322 (2011). [CrossRef] [PubMed]
  54. M. Bozzi, S. Germani, and L. Perregrini, “A figure of merit for losses in printed reflectarray elements,” IEEE Antennas Wirel. Propag. Lett.3, 257–260 (2004). [CrossRef]
  55. S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett.37, 2391–2393 (2012). [CrossRef] [PubMed]
  56. A. Pors, I. Tsukerman, and S. I. Bozhevolnyi, “Effective constitutive parameters of plasmonic metamaterials: homogenization by dual field interpolation,” Phys. Rev. E84, 016609 (2011). [CrossRef]
  57. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340, 331–334 (2013). [CrossRef] [PubMed]
  58. D. R. Solli and J. M. Hickmann, “Photonic crystal based polarization control devices,” J. Phys. D: Appl. Phys.37, R263–R268 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited