OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27550–27557

Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm

Vanessa Zamora, Peter Lützow, Martin Weiland, and Daniel Pergande  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27550-27557 (2013)
http://dx.doi.org/10.1364/OE.21.027550


View Full Text Article

Enhanced HTML    Acrobat PDF (1253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical device operating at wavelengths around 1.3 µm and 1.5 µm is demonstrated experimentally. It is based on cascaded microring resonators (CMRRs) and the Vernier effect (VE). The architecture consists of two microring resonators (MRRs) connected via a common waveguide; two waveguides were added for the interrogation of CMRRs. The free spectral ranges of both MRRs are slightly different in order to activate the VE, which is known to enhance the sensitivity in optical sensors. CMRRs were fabricated on a silicon nitride (SiN) platform. Two types of buffer layers—benzocyclobutene (BCB) polymer and thermal silicon oxide (SiOx)—were tested. A study of CMRRs was carried out with three structures of different structural parameters. The experimental results show good agreement with the theoretical analysis. This approach is promising for the fabrication of highly sensitive optical sensors in wide operating wavelength range.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: June 21, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: August 21, 2013
Published: November 4, 2013

Citation
Vanessa Zamora, Peter Lützow, Martin Weiland, and Daniel Pergande, "Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm," Opt. Express 21, 27550-27557 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Rong, A. Najmaie, J. E. Sipe, and S. M. Weiss, “Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosens. Bioelectron.23(10), 1572–1576 (2008). [CrossRef] [PubMed]
  2. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett.33(6), 596–598 (2008). [CrossRef] [PubMed]
  3. S. Nacer and A. Aissat, “Optical sensing by silicon slot-based directional couplers,” Opt. Quantum Electron.44(1-2), 35–43 (2012). [CrossRef]
  4. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009). [CrossRef] [PubMed]
  5. A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron.23(7), 939–944 (2008). [CrossRef] [PubMed]
  6. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett.30(24), 3344–3346 (2005). [CrossRef] [PubMed]
  7. C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip10(3), 281–290 (2010). [CrossRef] [PubMed]
  8. P. Lützow, D. Pergande, and H. Heidrich, “Integrated optical sensor platform for multiparameter bio-chemical analysis,” Opt. Express19(14), 13277–13284 (2011). [CrossRef] [PubMed]
  9. D. X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010). [CrossRef]
  10. L. Jin, M. Li, and J.-J. He, “Highly-sensitive optical sensor using two cascaded-microring resonators with vernier effect,” in Asia Communications and Photonics Conference, Technical Digest (TD) (Optical Society of America, 2009), paper TuM4. [CrossRef]
  11. D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express17(26), 23817–23822 (2009). [CrossRef] [PubMed]
  12. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express18(22), 22747–22761 (2010). [CrossRef] [PubMed]
  13. L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded-microring resonators with Vernier effect,” Opt. Commun.284(1), 156–159 (2011). [CrossRef]
  14. J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett.23(13), 842–844 (2011). [CrossRef]
  15. L. Jin, M. Li, and J.-J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett.36(7), 1128–1130 (2011). [CrossRef] [PubMed]
  16. V. Zamora, P. Lützow, D. Pergande, and H. Heidrich, “Cascaded microring resonators for biomedical applications: improved sensitivity at large tuning range,” Proc. SPIE8570, 857002, 857002–857008 (2013). [CrossRef]
  17. S. J. Choi, Z. Peng, Q. Yang, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using vernier effects,” IEEE Photon. Technol. Lett.17(1), 106–108 (2005). [CrossRef]
  18. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng.50(7), 074601 (2011). [CrossRef]
  19. G. Maire, L. Vivien, G. Sattler, A. Kaźmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express16(1), 328–333 (2008). [CrossRef] [PubMed]
  20. P. Lützow, D. Pergande, D. Gausa, S. Huscher, and H. Heidrich, “Microring resonator arrays for multiparameter biochemical analysis,” Proc. SPIE8427(84270E), 84270E (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited