OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27631–27640

Energy exchange between two noncollinear filament-forming laser pulses in air

Pengji Ding, Zeqing Guo, Xiaoshan Wang, Yu Cao, Mingze Sun, Peixi Zhao, Yanchao Shi, Shaohua Sun, Xiaoliang Liu, and Bitao Hu  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27631-27640 (2013)
http://dx.doi.org/10.1364/OE.21.027631


View Full Text Article

Enhanced HTML    Acrobat PDF (1134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Energy exchange between two filament-forming pulses with initially free chirp in air was experimentally studied. It occurs because of the change of delayed nonlinear refractive index, which slightly chirps the incident filament-forming laser pulses. Accompanying energy exchange process, spectral characteristics of output laser pulses shows dramatic blueshift and supercontinuum generation. Nonlinear absorptive effect introduces an inbalance between energy exchange at the negative delays and that at the positive delays, and affects the energy exchange efficiency. These results may provide a more comprehensive understanding of energy exchange process between filament-forming laser pulses.

© 2013 OSA

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.7070) Nonlinear optics : Two-wave mixing
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 26, 2013
Revised Manuscript: October 18, 2013
Manuscript Accepted: October 21, 2013
Published: November 4, 2013

Citation
Pengji Ding, Zeqing Guo, Xiaoshan Wang, Yu Cao, Mingze Sun, Peixi Zhao, Yanchao Shi, Shaohua Sun, Xiaoliang Liu, and Bitao Hu, "Energy exchange between two noncollinear filament-forming laser pulses in air," Opt. Express 21, 27631-27640 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27631


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett.20, 73–75 (1995).
  2. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007).
  3. S.L. Chin, T.–J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J.–F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Lic, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys.22, 1–53 (2011).
  4. Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Efficient generation of third harmonic radiation in air filaments: A revisit,” Opt. Commun.284, 4706–4713 (2011).
  5. P. J. Ding, Z. Y. Liu, Y. C. Shi, S. H. Sun, X. L. Liu, X. Sh. Wang, Z. Q. Guo, Q. C. Liu, Y. H. Li, and B. T. Hu, “Spectral characterization of third-order harmonic generation assisted by a two-dimensional plasma grating in air,” Phys. Rev. A87, 043828 (2013).
  6. X. Yang, J. Wu, Y. Tong, L.’en Ding, Z. Xu, and H. Zeng, “Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air,” Appl. Phys. Lett.97, 071108 (2010).
  7. A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, “Two-beam coupling between filament-forming beams in air,” Phys. Rev. Lett.102, 123902 (2009).
  8. Y. B. Zhao, T. E. Witt, and J. Gordon, “Efficient energy transfer between laser beams by stimulated Raman scattering,” Phys. Rev. Lett.103, 173903 (2009).
  9. Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, and A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett.105, 055003 (2010).
  10. M. Durand, Y. Liu, B. Forestier, A. Houard, and A. Mysyrowicz, “Experimental observation of a traveling plasma grating formed by two crossing filaments in gases,” Appl. Phys. Lett.98, 121110 (2011).
  11. B. D. Strycker, M. Springer, C. Trendafilova, X. Hua, M. Zhi, A. A. Kolomenskii, H. Schroeder, J. Strohaber, H. A. Schuessier, G. W. Kattawar, and A. V. Sokolov, “Energy transfer between laser filaments in liquid methanol,” Opt. Lett.37, 16–18 (2012).
  12. G. Cheng, Y. H. Zheng, Y. Zhong, Z. N. Zeng, C. Li, X. C. Ge, R. X. Li, and Z. Z. Xu, “Energy transfer between few-cycle laser filaments in air,” Appl. Phys. Lett.101, 251111 (2012).
  13. S. Smolorz and F. Wise, “Femtosecond two-beam coupling energy transfer from Raman and electronic nonlinearities,” J. Opt. Soc. Am. B17, 1636–1644 (2000).
  14. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  15. M. Durand, A. Jarnac, Y. Liu, B. Prade, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, ”Dynamics of plasma gratings in atomic and molecular gases,” Phys. Rev. E86, 036405 (2012).
  16. A. Dogariu, T. Xia, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Purely refractive transient energy transfer by stimulated Rayleigh-wing scattering,” J. Opt. Soc. Am. B14, 796–803 (1997).
  17. J. K. Wahlstrand, J. H. Odhner, E. T. McCole, Y.-H. Cheng, J. P. Palastro, R. J. Levis, and H. M. Milchberg, “Effect of two-beam coupling in strong-field optical pump-probe experiments,” Phys. Rev. A87, 053801 (2013).
  18. N. Tang and R. L. Sutherland, “Time-domain theory for pump-probe experiments with chirped pulses,” J. Opt. Soc. Am. B14, 3412–3423 (1997).
  19. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B14, 650–660 (1997).
  20. Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett.99, 181114 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited