OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27652–27661

Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches

Roman Bruck and Otto L. Muskens  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27652-27661 (2013)
http://dx.doi.org/10.1364/OE.21.027652


View Full Text Article

Enhanced HTML    Acrobat PDF (1461 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of plasmonic nanoantenna structures on top of SOI wire waveguides as coherent perfect absorbers for modulators and all-optical switches is explored. The absorption, scattering, reflection and transmission spectra of gold and aluminum nanoantenna-loaded waveguides were calculated by means of 3D finite-difference time-domain simulations for single waves propagating along the waveguide, as well as for standing wave scenarios composed from two counterpropagating waves. The investigated configurations showed losses of roughly 1% and extinction ratios greater than 25 dB for modulator and switching applications, as well as plasmon effects such as strong field enhancement and localization in the nanoantenna region. The proposed plasmonic coherent perfect absorbers can be utilized for ultracompact all-optical switches in coherent networks as well as modulators and can find applications in sensing or in increasing nonlinear effects.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(230.7370) Optical devices : Waveguides
(260.3160) Physical optics : Interference
(290.0290) Scattering : Scattering
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Integrated Optics

History
Original Manuscript: September 4, 2013
Revised Manuscript: October 23, 2013
Manuscript Accepted: October 24, 2013
Published: November 4, 2013

Citation
Roman Bruck and Otto L. Muskens, "Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches," Opt. Express 21, 27652-27661 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27652


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14(4), 483–485 (2002). [CrossRef]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  3. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electon. Lett.46(5), 368–369 (2010). [CrossRef]
  4. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett.105(5), 053901 (2010). [CrossRef] [PubMed]
  5. H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett.108(18), 186805 (2012). [CrossRef] [PubMed]
  6. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science331(6019), 889–892 (2011). [CrossRef] [PubMed]
  7. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express20(2), 1330–1336 (2012). [CrossRef] [PubMed]
  8. S. Longhi and G. Della Valle, “Coherent perfect absorbers for transient, periodic, or chaotic optical fields: time-reversed lasers beyond threshold,” Phys. Rev. A85(5), 053838 (2012). [CrossRef]
  9. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Science & Applications1(7), e18 (2012), doi:. [CrossRef]
  10. M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett.38(16), 3086–3088 (2013). [CrossRef] [PubMed]
  11. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B86(16), 165103 (2012). [CrossRef]
  12. G. Pirruccio, G. Lozano, Y. Zhang, S. R. K. Rodriguez, R. Gomes, Z. Hens, and J. G. Rivas, “Coherent absorption and enhanced photoluminescence in thin layers of nanorods,” Phys. Rev. B85(16), 165455 (2012). [CrossRef]
  13. R. R. Grote, J. B. Driscoll, and R. M. Osgood., “Integrated optical modulators and switches using coherent perfect loss,” Opt. Lett.38(16), 3001–3004 (2013). [CrossRef] [PubMed]
  14. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010). [CrossRef] [PubMed]
  15. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  16. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  17. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  18. I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12(2), 1092–1095 (2012). [CrossRef] [PubMed]
  19. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  20. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011). [CrossRef] [PubMed]
  21. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res.41(12), 1578–1586 (2008). [CrossRef] [PubMed]
  22. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater.10(12), 911–921 (2011). [CrossRef] [PubMed]
  23. S. Kéna-Cohen, A. Wiener, Y. Sivan, P. N. Stavrinou, D. D. Bradley, A. Horsfield, and S. A. Maier, “Plasmonic sinks for the selective removal of long-lived states,” ACS Nano5(12), 9958–9965 (2011). [CrossRef] [PubMed]
  24. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327 (1996). [CrossRef]
  25. L. Feng, D. Van Orden, M. Abashin, Q.-J. Wang, Y.-F. Chen, V. Lomakin, and Y. Fainman, “Nanoscale optical field localization by resonantly focused plasmons,” Opt. Express17(6), 4824–4832 (2009). [CrossRef] [PubMed]
  26. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012). [CrossRef] [PubMed]
  27. M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express20(16), 17402–17410 (2012). [CrossRef]
  28. M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J. M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A109(4), 935–942 (2012). [CrossRef]
  29. F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano6(11), 10156–10167 (2012). [CrossRef] [PubMed]
  30. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett.10(3), 891–895 (2010). [CrossRef] [PubMed]
  31. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010). [CrossRef] [PubMed]
  32. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003). [CrossRef] [PubMed]
  33. Lumerical FDTD solutions, V 8.5.3, http://www.lumerical.com
  34. Handbook of Optical Constants of Solids, edited by E. Palik, (Academic Press, 1985).
  35. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15(10), 5976–5990 (2007). [CrossRef] [PubMed]
  36. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, and P. Hertel, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B22, 240–253 (2005). [CrossRef]
  37. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011). [CrossRef] [PubMed]
  38. I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express20(8), 8929–8938 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (3117 KB)     
» Media 2: MPG (3053 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited