OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27734–27749

Retrieving the displacement of strained nanoobjects: the impact of bounds for the scattering magnitude in direct space

Martin Köhl, Philipp Schroth, A. A. Minkevich, and Tilo Baumbach  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27734-27749 (2013)
http://dx.doi.org/10.1364/OE.21.027734


View Full Text Article

Enhanced HTML    Acrobat PDF (3846 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent X-ray diffraction imaging (CXDI) of the displacement field and strain distribution of nanostructures in kinematic far-field conditions requires solving a set of non-linear and non-local equations. One approach to solving these equations, which utilizes only the object’s geometry and the intensity distribution in the vicinity of a Bragg peak as a priori knowledge, is the HIO+ER-algorithm. Despite its success for a number of applications, reconstruction in the case of highly strained nanostructures is likely to fail. To overcome the algorithm’s current limitations, we propose the HIO O R M + ER M-algorithm which allows taking advantage of additional a priori knowledge of the local scattering magnitude and remedies HIO+ER’s stagnation by incorporation of randomized overrelaxation at the same time. This approach achieves significant improvements in CXDI data analysis at high strains and greatly reduces sensitivity to the reconstruction’s initial guess. These benefits are demonstrated in a systematic numerical study for a periodic array of strained silicon nanowires. Finally, appropriate treatment of reciprocal space points below noise level is investigated.

© 2013 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(290.3200) Scattering : Inverse scattering
(100.3200) Image processing : Inverse scattering
(110.3200) Imaging systems : Inverse scattering

ToC Category:
Image Processing

History
Original Manuscript: June 21, 2013
Revised Manuscript: August 30, 2013
Manuscript Accepted: September 2, 2013
Published: November 5, 2013

Citation
Martin Köhl, Philipp Schroth, A. A. Minkevich, and Tilo Baumbach, "Retrieving the displacement of strained nanoobjects: the impact of bounds for the scattering magnitude in direct space," Opt. Express 21, 27734-27749 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Köhl, A. A. Minkevich, and T. Baumbach, “Improved success rate and stability for phase retrieval by including randomized overrelaxation in the hybrid input output algorithm,” Opt. Express20, 17093–17106 (2012). [CrossRef]
  2. J. A. Rodriguez, R. Xu, C.-C. Chen, Y. Zou, and J. Miao, “Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities,” J. Appl. Crystallogr.46, 312–318 (2013). [CrossRef] [PubMed]
  3. D. E. Adams, L. S. Martin, M. D. Seaberg, D. F. Gardner, H. C. Kapteyn, and M. M. Murnane, “A generalization for optimized phase retrieval algorithms,” Opt. Express20, 24778–24790 (2012). [CrossRef] [PubMed]
  4. A. A. Minkevich, T. Baumbach, M. Gailhanou, and O. Thomas, “Applicability of an iterative inversion algorithm to the diffraction patterns from inhomogeneously strained crystals,” Phys. Rev. B78, 174110 (2008). [CrossRef]
  5. A. A. Minkevich, M. Gailhanou, J.-S. Micha, B. Charlet, V. Chamard, and O. Thomas, “Inversion of the diffraction pattern from an inhomogeneously strained crystal using an iterative algorithm,” Phys. Rev. B76, 104106 (2007). [CrossRef]
  6. Y. Chushkin and F. Zontone, “Upsampling speckle patterns for coherent x-ray diffraction imaging,” J. Appl. Crystallogr.46, 319–323 (2013). [CrossRef]
  7. R. Trahan and D. Hyland, “Mitigating the effect of noise in the hybrid input-output method of phase retrieval,” Appl. Opt.52, 3031–3037 (2013). [CrossRef] [PubMed]
  8. G. Renaud, R. Lazzari, and F. Leroy, “Probing surface and interface morphology with grazing incidence small angle x-ray scattering,” Surf. Sci. Rep.64, 255–380 (2009). [CrossRef]
  9. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett.56, 930–933 (1986). [CrossRef] [PubMed]
  10. F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys.75, 949–983 (2003). [CrossRef]
  11. S. Cuenot, C. Frétigny, S. Demoustier-Champagne, and B. Nysten, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy,” Phys. Rev. B69, 165410 (2004). [CrossRef]
  12. N. Jalili and K. Laxminarayana, “A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences,” Mechatronics14, 907–945 (2004). [CrossRef]
  13. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, vol. 45 (Springer Series in Optical Sciences, 1998), 2nd ed. [CrossRef]
  14. A. Diaz, V. Chamard, C. Mocuta, R. Magalhães-Paniago, J. Stangl, D. Carbone, T. H. Metzger, and G. Bauer, “Imaging the displacement field within epitaxial nanostructures by coherent diffraction: a feasibility study,” New J. Phys.12, 035006 (2010). [CrossRef]
  15. S. T. Haag, M.-I. Richard, S. Labat, M. Gailhanou, U. Welzel, E. J. Mittemeijer, and O. Thomas, “Anomalous coherent diffraction of core-shell nano-objects: a methodology for determination of composition and strain fields,” Phys. Rev. B87, 035408 (2013). [CrossRef]
  16. P. Godard, G. Carbone, M. Allain, F. Mastropietro, G. Chen, L. Capello, A. Diaz, T. Metzger, J. Stangl, and V. Chamard, “Three-dimensional high-resolution quantitative microscopy of extended crystals,” Nat. Commun.2, 568 (2011). [CrossRef] [PubMed]
  17. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature467, 436 (2010). [CrossRef] [PubMed]
  18. I. Robinson and R. Harder, “Coherent x-ray diffraction imaging of strain at the nanoscale,” Nat. Mater.8, 291–298 (2009). [CrossRef] [PubMed]
  19. Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa, and K. Maeshima, “Three-dimensional visualization of a human chromosome using coherent x-ray diffraction,” Phys. Rev. Lett.102, 018101 (2009). [CrossRef] [PubMed]
  20. C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett.101, 090801 (2008). [CrossRef] [PubMed]
  21. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature400, 342–344 (1999). [CrossRef]
  22. M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, “Three-dimensional mapping of a deformation field inside a nanocrystal,” Nature442, 63–66 (2006). [CrossRef] [PubMed]
  23. A. Biermanns, A. Davydok, H. Paetzelt, A. Diaz, V. Gottschalch, T. H. Metzger, and U. Pietsch, “Individual GaAs nanorods imaged by coherent x-ray diffraction,” J. Synchrotron Radiat.16, 796–802 (2009). [CrossRef] [PubMed]
  24. A. A. Minkevich, E. Fohtung, T. Slobodskyy, M. Riotte, D. Grigoriev, T. Metzger, A. C. Irvine, V. Novák, V. Holý, and T. Baumbach, “Strain field in (Ga,Mn)As/GaAs periodic wires revealed by coherent x-ray diffraction,” Europhys. Lett.94, 66001 (2011). [CrossRef]
  25. A. A. Minkevich, E. Fohtung, T. Slobodskyy, M. Riotte, D. Grigoriev, M. Schmidbauer, A. C. Irvine, V. Novák, V. Holý, and T. Baumbach, “Selective coherent x-ray diffractive imaging of displacement fields in (Ga,Mn)As/GaAs periodic wires,” Phys. Rev. B84, 054113 (2011). [CrossRef]
  26. R. Millane, “Phase retrieval in crystallography and optics,” J. Opt. Soc. Am. A7, 394–411 (1990). [CrossRef]
  27. S. G. Podorov, K. M. Pavlov, and D. M. Paganin, “A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging,” Opt. Express15, 9954–9962 (2007). [CrossRef] [PubMed]
  28. I. A. Vartanyants and I. K. Robinson, “Partial coherence effects on the imaging of small crystals using coherent x-ray diffraction,” J. Phys.: Condens. Matter13, 10593–10611 (2001). [CrossRef]
  29. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21, 2758–2769 (1982). [CrossRef] [PubMed]
  30. J. Fienup, “Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint,” J. Opt. Soc. Am. A4, 118–123 (1986). [CrossRef]
  31. S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Instrum.78, 011301 (2007). [CrossRef]
  32. S. Marchesini, “Phase retrieval and saddle-point optimization,” J. Opt. Soc. Am. A24, 3289–3296 (2007). [CrossRef]
  33. A. Levi and H. Stark, “Image restoration by the method of generalized projections with application to restoration from magnitude,” J. Opt. Soc. Am. A1, 932–943 (1984). [CrossRef]
  34. D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1 - theory,” IEEE Trans. Med. Imaging1, 81–94 (1982). [CrossRef]
  35. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101 (2007). [CrossRef]
  36. K. Busch, C. Blum, A. M. Graham, D. Hermann, M. Köhl, P. Mack, and C. Wolff, “The photonic Wannier function approach to photonic crystal simulations: status and perspectives,” J. Mod. Opt.58, 365–383 (2011). [CrossRef]
  37. M. Köhl, C. Wolff, and K. Busch, “Cluster coherent potential approximation for disordered photonic crystals using photonic Wannier functions,” Opt. Lett.37, 560–562 (2012). [CrossRef] [PubMed]
  38. K. Busch, S. F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, “The Wannier function approach to photonic crystal circuits,” J. Phys. Condens. Matter15, R1233 (2003). [CrossRef]
  39. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987). [CrossRef] [PubMed]
  40. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987). [CrossRef] [PubMed]
  41. S. Takagi, “A dynamical theory of diffraction for a distorted crystal,” J. Phys. Soc. Jpn.26, 1239–1253 (1969). [CrossRef]
  42. U. Pietsch, V. Holy, and T. Baumbach, High-Resolution X-Ray Scattering from Thin Films to Lateral Nanostructures (Springer, New York, 2004). [CrossRef]
  43. J.-F. Weng and Y.-L. Lo, “Novel rotation algorithm for phase unwrapping applications,” Opt. Express20, 16838–16860 (2012). [CrossRef]
  44. T. Benabbas, Y. Androussi, and A. Lefebvre, “A finite-element study of strain fields in vertically aligned InAs islands in GaAs,” J. Appl. Phys.86, 1945–1950 (1999). [CrossRef]
  45. M. Hanke, D. Grigoriev, M. Schmidbauer, P. Schäfer, R. Köhler, U. Pohl, R. Sellin, D. Bimberg, N. Zakharov, and P. Werner, “Diffuse x-ray scattering of InGaAs/GaAs quantum dots,” Physica E21, 684–688 (2004). Proceedings of the Eleventh International Conference on Modulated Semiconductor Structures. [CrossRef]
  46. M. Hanke, D. Grigoriev, M. Schmidbauer, P. Sch¨afer, R. Köhler, R. L. Sellin, U. W. Pohl, and D. Bimberg, “Vertical composition gradient in InGaAs/GaAs alloy quantum dots as revealed by high-resolution x-ray diffraction,” Appl. Phys. Lett.85, 3062 (2004). [CrossRef]
  47. G. R. Liu and S. S. Q. Jerry, “A finite element study of the stress and strain fields of InAs quantum dots embedded in GaAs,” Semicond. Sci. Technol.17, 630–643 (2002). [CrossRef]
  48. M. Hanke, Y. I. Mazur, J. E. Marega, Z. Y. AbuWaar, G. J. Salamo, P. Sch¨afer, and M. Schmidbauer, “Shape transformation during overgrowth of InGaAs/GaAs(001) quantum rings,” Appl. Phys. Lett.91, 043103 (2007). [CrossRef]
  49. P. Schroth, T. Slobodskyy, D. Grigoriev, A. Minkevich, M. Riotte, S. Lazarev, E. Fohtung, D. Hu, D. Schaadt, and T. Baumbach, “Investigation of buried quantum dots using grazing incidence x-ray diffraction,” Mater. Sci. Eng., B177, 721–724 (2012). [CrossRef]
  50. M. Eberlein, S. Escoubas, M. Gailhanou, O. Thomas, J.-S. Micha, P. Rohr, and R. Coppard, “Investigation by high resolution x-ray diffraction of the local strains induced in Si by periodic arrays of oxide filled trenches,” Phys. Status Solidi A204, 2542–2547 (2007). [CrossRef]
  51. M. Eberlein, S. Escoubas, M. Gailhanou, O. Thomas, P. Rohr, and R. Coppard, “Influence of crystallographic orientation on local strains in silicon: a combined high-resolution x-ray diffraction and finite element modelling investigation,” Thin Solid Films516, 8042–8048 (2008). [CrossRef]
  52. P. Thibault, V. Elser, C. Jacobsen, D. Shapiro, and D. Sayre, “Reconstruction of a yeast cell from x-ray diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr.62, 248–261 (2006). [CrossRef]
  53. M. Frigo and S. Johnson, “The design and implementation of FFTW3,” Proc. IEEE93, 216–231 (Feb.).
  54. R. P. Millane, “Multidimensional phase problems,” J. Opt. Soc. Am. A13, 725–734 (1996). [CrossRef]
  55. J. H. Seldin and J. R. Fienup, “Numerical investigation of the uniqueness of phase retrieval,” J. Opt. Soc. Am. A7, 412–427 (1990). [CrossRef]
  56. R. H. T. Bates, “Fourier phase problems are uniquely solvable in more than one dimension,” Optik (Stuttgart)61, 247–262 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited