OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 27826–27834

Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement

Erman Engin, Damien Bonneau, Chandra M. Natarajan, Alex S. Clark, M. G. Tanner, R. H. Hadfield, Sanders N. Dorenbos, Val Zwiller, Kazuya Ohira, Nobuo Suzuki, Haruhiko Yoshida, Norio Iizuka, Mizunori Ezaki, Jeremy L. O’Brien, and Mark G. Thompson  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 27826-27834 (2013)
http://dx.doi.org/10.1364/OE.21.027826


View Full Text Article

Enhanced HTML    Acrobat PDF (1094 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photon sources are fundamental components for any quantum photonic technology. The ability to generate high count-rate and low-noise correlated photon pairs via spontaneous parametric down-conversion using bulk crystals has been the cornerstone of modern quantum optics. However, future practical quantum technologies will require a scalable integration approach, and waveguide-based photon sources with high-count rate and low-noise characteristics will be an essential part of chip-based quantum technologies. Here, we demonstrate photon pair generation through spontaneous four-wave mixing in a silicon micro-ring resonator, reporting separately a maximum coincidence-to-accidental (CAR) ratio of 602 ± 37 (for a generation rate of 827kHz), and a maximum photon pair generation rate of 123 MHz ± 11 kHz (with a CAR value of 37). To overcome free-carrier related performance degradations we have investigated reverse biased p-i-n structures, demonstrating an improvement in the pair generation rate by a factor of up to 2 with negligible impact on CAR.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Quantum Optics

History
Original Manuscript: July 22, 2013
Revised Manuscript: October 9, 2013
Manuscript Accepted: October 10, 2013
Published: November 6, 2013

Citation
Erman Engin, Damien Bonneau, Chandra M. Natarajan, Alex S. Clark, M. G. Tanner, R. H. Hadfield, Sanders N. Dorenbos, Val Zwiller, Kazuya Ohira, Nobuo Suzuki, Haruhiko Yoshida, Norio Iizuka, Mizunori Ezaki, Jeremy L. O’Brien, and Mark G. Thompson, "Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement," Opt. Express 21, 27826-27834 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-27826


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O'Brien, “Integrated waveguide circuits for optical quantum computing,” Circuits, Devices & Systems, IET5(2), 94–102 (2011). [CrossRef]
  2. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008). [CrossRef] [PubMed]
  3. A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science325(5945), 1221 (2009). [CrossRef] [PubMed]
  4. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science329(5998), 1500–1503 (2010). [CrossRef] [PubMed]
  5. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011). [CrossRef]
  6. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14(25), 12388–12393 (2006). [CrossRef] [PubMed]
  7. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013). [CrossRef]
  8. C. Schuck, W. H. P. Pernice, O. Minaeva, M. Li, G. Gol'tsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution. applied superconductivity,” IEEE Transactions on23, 2201007–2201014 (2013).
  9. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O'Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys.14(4), 045003–045014 (2012). [CrossRef]
  10. X. Xu, Z. Xie, J. Zheng, J. Liang, T. Zhong, M. Yu, S. Kocaman, G. Q. Lo, D. L. Kwong, D. R. Englund, F. N. C. Wong, and C. W. Wong, “Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip,” Opt. Express21(4), 5014–5024 (2013). [CrossRef] [PubMed]
  11. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett.36(17), 3413–3415 (2011). [CrossRef] [PubMed]
  12. N. Matsuda, H. Takesue, K. Shimizu, Y. Tokura, E. Kuramochi, and M. Notomi, “Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides,” Opt. Express21(7), 8596–8604 (2013). [CrossRef] [PubMed]
  13. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express17(19), 16558–16570 (2009). [CrossRef] [PubMed]
  14. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express20(21), 23100–23107 (2012). [CrossRef] [PubMed]
  15. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, B. Urena, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010). [CrossRef]
  16. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Analytical study of optical bistability in silicon ring resonators,” Opt. Lett.35(1), 55–57 (2010). [CrossRef] [PubMed]
  17. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433(7023), 292–294 (2005). [CrossRef] [PubMed]
  18. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010). [CrossRef] [PubMed]
  19. A. Gajda, L. Zimmermann, J. Bruns, B. Tillack, and K. Petermann, “Design rules for p-i-n diode carriers sweeping in nano-rib waveguides on SOI,” Opt. Express19(10), 9915–9922 (2011). [CrossRef] [PubMed]
  20. H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express14(3), 1182–1188 (2006). [CrossRef] [PubMed]
  21. L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35(18), 3006–3008 (2010). [CrossRef] [PubMed]
  22. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single photon on-demand source,” Phys. Rev. A66(5), 053805–053809 (2002). [CrossRef]
  23. K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron.16(1), 325–331 (2010). [CrossRef]
  24. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express16(25), 20368–20373 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited