OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28054–28061

Spoof plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser: a feasibility study

Greg Sun, Jacob B. Khurgin, and Din Ping Tsai  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28054-28061 (2013)
http://dx.doi.org/10.1364/OE.21.028054


View Full Text Article

Enhanced HTML    Acrobat PDF (1111 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and study the feasibility of a THz GaN/AlGaN quantum cascade laser (QCL) consisting of only five periods with confinement provided by a spoof surface plasmon (SSP) waveguide for room temperature operation. The QCL design takes advantages of the large optical phonon energy and the ultrafast phonon scattering in GaN that allow for engineering favorable laser state lifetimes. Our analysis has shown that the waveguide loss is sufficiently low for the QCL to reach its threshold at the injection current density around 6 kA/cm2 at room temperature.

© 2013 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5403) Optoelectronics : Plasmonics
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 30, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 29, 2013
Published: November 7, 2013

Citation
Greg Sun, Jacob B. Khurgin, and Din Ping Tsai, "Spoof plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser: a feasibility study," Opt. Express 21, 28054-28061 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28054


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002). [CrossRef] [PubMed]
  2. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express13(9), 3331–3339 (2005). [CrossRef] [PubMed]
  3. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express16(5), 3242–3248 (2008). [CrossRef] [PubMed]
  4. M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE Sel. Top. Quantum Electron.15(3), 952–967 (2009). [CrossRef]
  5. S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB,” Nat. Phys.7(2), 166–171 (2011). [CrossRef]
  6. S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012). [CrossRef] [PubMed]
  7. G. Sun, R. A. Soref, and J. B. Khurgin, “Active region design of a terahertz GaN/ Al0.15Ga0.85N quantum cascade laser,” Superlattices Microstruct.37(2), 107–113 (2005). [CrossRef]
  8. N. Iizuka, K. Kaneko, N. Suzuki, T. Asano, S. Noda, and O. Wada, “Ultrafast intersubband relaxation (150 fs) in AlGaN/GaN multiple quantum wells,” Appl. Phys. Lett.77(5), 648–650 (2000). [CrossRef]
  9. J. D. Heber, C. Gmachl, H. M. Ng, and A. Y. Cho, “Comparative study of ultrafast intersubband electron scattering times at ~1.55 μm wavelength in GaN/ALGaN heterostructures,” Appl. Phys. Lett.81(7), 1237–1239 (2002). [CrossRef]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  12. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater.19(22), 3771–3782 (2007). [CrossRef]
  13. C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006). [CrossRef]
  14. T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham, and J. Scanlon, “Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon,” Appl. Phys. Lett.59(8), 944–946 (1991). [CrossRef]
  15. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett.80(7), 1204–1206 (2002). [CrossRef]
  16. H. Ünlü and A. Asenov, “Band offsets in III-nitride heterostructures,” J. Phys. D Appl. Phys.35(7), 591–594 (2002). [CrossRef]
  17. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, “Terahertz quantum-cascade lasers based on a three-well active module,” Appl. Phys. Lett.90(4), 041112 (2007). [CrossRef]
  18. G. Sun and J. B. Khurgin, “Optically pumped four-level infrared laser based on intersubband transitions in multiple quantum wells: feasibility study,” IEEE J. Quantum Electron.29(4), 1104–1111 (1993). [CrossRef]
  19. W. J. Fan, M. F. Li, T. C. Chong, and J. B. Xia, “Electronic properties of zinc-blende GaN, AlN, and their alloys Ga1-xAlxN,” J. Appl. Phys.79(1), 188–194 (1996). [CrossRef]
  20. J. B. Khurgin and Y. Dikmelik, “Transport and gain in a quantum cascade laser: model and equivalent circuit,” Opt. Eng.49(11), 111110 (2010). [CrossRef]
  21. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” J. Appl. Phys. A100(2), 375–378 (2010). [CrossRef]
  22. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006). [CrossRef] [PubMed]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  24. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser operating up to 137 K,” Appl. Phys. Lett.83(25), 5142–5144 (2003). [CrossRef]
  25. M. Brandstetter, C. Deutsch, A. Benz, G. D. Cole, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “THz quantum cascade lasers with wafer bonded active regions,” Opt. Express20(21), 23832–23837 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited